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ABSTRACT
Tuple-independent probabilistic databases (TI-PDBs) han-
dle uncertainty by annotating each tuple with a probability
parameter; when the user submits a query, the database de-
rives the marginal probabilities of each output-tuple, assum-
ing input-tuples are statistically independent. While query
processing in TI-PDBs has been studied extensively, limited
research has been dedicated to the problems of updating or
deriving the parameters from observations of query results.
Addressing this problem is the main focus of this paper. We
introduce Beta Probabilistic Databases (B-PDBs), a general-
ization of TI-PDBs designed to support both (i) belief updat-
ing and (ii) parameter learning in a principled and scalable
way. The key idea of B-PDBs is to treat each parameter as
a latent, Beta-distributed random variable. We show how
this simple expedient enables both belief updating and pa-
rameter learning in a principled way, without imposing any
burden on regular query processing. We use this model to
provide the following key contributions: (i) we show how to
scalably compute the posterior densities of the parameters
given new evidence; (ii) we study the complexity of perform-
ing Bayesian belief updates, devising efficient algorithms for
tractable classes of queries; (iii) we propose a soft-EM algo-
rithm for computing maximum-likelihood estimates of the
parameters; (iv) we show how to embed the proposed algo-
rithms into a standard relational engine; (v) we support our
conclusions with extensive experimental results.

1. INTRODUCTION
Uncertain data arises in numerous settings, including data

exchange, ETL, approximate query processing, and more. In
the last decade, the challenge of posing queries over uncer-
tain data (data specified by a probability distribution) has
received considerable attention by the database community
[3, 6, 8, 9, 16, 22, 29, 30, 35, 43, 45, 46], and querying un-
certain data is relatively well understood. However, deriving
the probability distribution behind a probabilistic database
by observing its answers can be significantly harder [13, 14].
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In this paper, we address the challenge of building a prob-
abilistic database from a noisy, indirect signal. Specifically,
we propose a new model for probabilistic databases called
Beta-Probabilistic Databases (B-PDBs) that enables prin-
cipled approaches for deriving or updating the database’s
distribution. The information used to update or derive the
B-PDB may be indirect; a B-PDB can incorporate any infor-
mation that can be expressed in terms of the probability of a
positive boolean expression holding over the database. This
information may also be noisy — the information incorpo-
rated into a B-PDB may itself be sampled, as in a poll or a
vote, or crowdsourced. Most importantly, B-PDBs are com-
pletely backwards compatible with the widely used Tuple-
Independent model [6, 9, 10, 18] for probabilistic databases
(TI-PDBs), allowing us to freely leverage query processing
techniques developed for TI-PDBs, like pRA [18], Monte
Carlo simulations [8, 30, 34], anytime approximations [17],
dissociations [19, 20], lineage-based methods [23] and more.
B-PDBs enable a more powerful form of pay-as-you-go feed-
back on query results [31, 48], as well as probabilistic forms
of in-database constraint programming [24, 33] and of vir-
tualized experiments [12].

Example 1 (Running example) Consider a hypothetical
data aggregator combining information from a variety of
sources like LinkedIn, Facebook, or Twitter, for example to
make hiring decisions. Based on a tweet, the aggregator is
able to infer that Ada is employed in Boston, but not her
employer. Given a table of employers R(name,emp) and lo-
cations L(emp,loc), an equivalent assertion is given in the
following existential query:

exists(select * from R natural join L

where R.name=’Ada’ and L.loc=’Boston’)

This information could then, in principle, be propagated di-
rectly into the database. However, there are at least two
sources of uncertainty that could potentially make this asser-
tion untrustworthy. First, ambiguous phrasing might leave
the aggregator’s natural-language information extraction un-
certain. Secondly, information obtained from different sources
may be contradictory. B-PDBs make it possible to account
for both of these factors when updating the underlying database.

In the Tuple-Independent model, a database is a set of
n tuples {x1, . . . , xn}, annotated with independent prob-
abilities {θ1, . . . , θn}. It represents a standard relational
database whose internal state is uncertain; the set of its
plausible states (its “possible worlds”) consists of the power-
set of {x1, . . . , xn}. The probability of a possible world
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w is simply the probability of selecting its tuples indepen-
dently: P[w] =

∏
xi∈w θi ·

∏
xj 6∈w(1 − θj). Given a Boolean

query q, the probability of q being true is equal to the sum
of the probabilities of the possible worlds that satisfy q:
P[q] =

∑
w|=q P[w].

Example 1 (continued) We could use a TI-PDB to en-
code noisy knowledge about employment histories:

Rp

name emp tid θ
Ada HP x1 .6
Ada IBM x2 .6
Bob HP x3 .5

If we want to find out whether the person named Ada ever
had an employer, we run the following Boolean query

exists(select * from R
p
where name=’Ada’) (1)

The answer is expected to be true (“Ada had at least one
employer in the past”) with probability 0.84 and false (“Ada
never had a job”) with probability 0.16.1

Let’s now assume we are given (i) a TI-PDB D whose

parameters are hidden, (ii) a set of Boolean queries Q def
=

{q1, . . . , qk}, and (iii) a finite set of query-answers sampled
from P[q], for each q in Q. We denote by E (the “evidence”)
the whole set of samples and we assume each sample is
drawn independently from all the others. This paper focuses
mainly on two problems:

1. Belief updates: given an initial hypothesis about the
hidden parameters of D, we show how to refine such hy-
pothesis as to incorporate the evidence E .

2. Parameter learning: we show how to derive a new hy-
pothesis from scratch, relying only on the given evidence.

Without lack of generality, we assume each query is observed
exactly s times, and we denote by τ the fraction of positive
answers. Therefore, we model the evidence E as a mapping
that associates each query to its observed relative frequency

of positive answers: E def
= {(q1, τ1), (q2, τ2), . . . , (qk, τk)}.

Example 1 (continued) If we crawled the web and re-
trieved 25 LinkedIn profiles that are all plausible, equally
likely matches for the entity named Ada, and all of them
but 4 report some unspecified work experience, then we can
associate the relative frequency τ = 0.84 to query (1), and
set s = 25. Evidence for other queries can be collected in a
similar fashion.

Belief updating is useful when someone wants to improve
an already reliable probabilistic model, exploiting some new,
previously unseen, evidence. For example, let’s assume we
trust the information stored in relation Rp, but we want to
improve our knowledge about Ada’s work history. In order
to do so, we submit the query “has Ada ever worked for
IBM?”2 to 10 independent data banks. If at least 7 of them
answer “yes”, then we may want to increase parameter θ1 in
Rp (whose initial value is 0.6) as to reflect this additional in-
formation. Clearly, the extent of the adjustment will depend

1The probabilities follow from 1− [(1− 0.6) · (1− 0.6)] = 0.84. Also
notice that we adopt here a closed-world assumption as is common
with TI-PDBs: any missing tuple is assumed to have probability 0.
2In SQL: exists(select * from R where name=’Ada’ and emp=’IBM’).
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before observing ¬(x1 ∨ x3)
name emp tid a b 〈θ〉 h [θ]
Ada HP x1 6 4 .6 −0.507
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 2 .5 −0.125

after observing ¬(x1 ∨ x3)
name emp tid a b 〈θ〉 h [θ]
Ada HP x1 6 5 .54 −0.528
Ada IBM x2 18 12 .6 −1.014
Bob HP x3 2 3 .4 −0.235

Figure 1: A simple B-PDB with three tuples, before (solid red)
and after (dashed green) observing the answer “no” to the query
exists(select * from R where emp=’HP’) .

on how strong our initial confidence about the value of θ1

was. Belief updating is about computing these adjustments
to prior beliefs in a principled way.

Parameter learning is about using the experts’ opinion to
build a new probabilistic model from scratch. For example:
if we are told that the query

q = select emp from R where name=’Ada’

should return the answer {HP, IBM} (“Ada worked for both
HP and IBM”) with relative frequency 0.32 (or some other
answer with relative frequency 1− 0.32 = 0.68), and should
return the empty set ∅ (“Ada has not worked before”) with
relative frequency 0.12 (or some other non-empty answer
with relative frequency 1 − 0.12 = 0.88), then our goal be-
comes to choose θ1 and θ2 so that the model (Rp) exhibits
the desired marginal probabilities for q. This is achieved ei-
ther when (θ1, θ2) = (0.4, 0.8) or when (θ1, θ2) = (0.8, 0.4).3

The key idea behind B-PDBs is to model the param-
eters {θ1, . . . , θn} as Beta-distributed latent random vari-
ables. This simple expedient allows us to (i) model both our
current estimate of a probability and its confidence in a nat-
ural way, and (ii) to deploy a principled way to update those
estimates in the presence of new evidence. We illustrate with
Figure 1 (first table) a simple B-PDB, consisting of a single
relation, generalizing the TI-relation Rp we introduced in
Example 1. Notice that for each tuple xi the parameter θi
has been replaced by two parameters, ai and bi. The sym-
bol θi is now used to identify a [0, 1]-valued random variable,
whose probability density is Beta-distributed:

p[θi]
def
= θai−1

i · (1− θi)bi−1 · B(ai, bi)
−1 (2)

Here B(·, ·) denotes the Beta function, which serves as a
normalizing factor4 . The three solid-red plots on the left
in Figure 1 depict the density functions p[θ] for each tuple
in the B-PDB. An intuitive way to understand Beta distri-
butions is to think about their parameters a and b as votes.
Under this interpretation, the first row in the B-PDB repre-
sents a poll where the query “has Ada ever worked for HP?”
has received 6 positive answers and 4 negative ones. Simi-
larly, the second row can be seen as a poll where the query
“has Ada ever worked for IBM?” has received 18 positive

3Since 0.32 = 0.8 · 0.4 and 0.12 = (1− 0.8)(1− 0.4). Notice that q is
not a Boolean query. Nonetheless, the example is well defined: it is
possible to write a Boolean query to verify whether the answer to q
is {HP, IBM}, and another one to verify whether the answer is ∅.
4Chapter 25 of [32] is a good introduction to Beta distributions.



votes and 12 negative ones. While the relative frequency
of positive answers is the same for both the polls (0.6), the
second poll should be considered more informative, as it in-
volves more votes (30 against 10). Consistently with this
intuition, the plots of p[θ1] and p[θ2] have both a peak on
.6, but the former exhibits a higher entropy than the latter.

In B-PDBs the marginal probability of a tuple xi is de-
termined by the expected value of the random variable θi:

P[xi] =

∫ 1

0

θi · p[θi] dθi (3)

From now on we denote with 〈θi〉 the expected value of θi. It
is well known [32] that the integral in Equation (3) admits
the following closed solution: P[xi] = 〈θi〉 = ai/(ai + bi).
It follows that B-PDBs are indistinguishable from regular
TI-PDBs when it comes to query processing: all existing in-
ference techniques, both exact and approximate, that have
been proposed in the past for TI-PDBs [10, 17, 20, 34, 41,
42] can be readily applied to B-PDBs. To do so it is suffi-
cient to convert the B-PDB into a TI-DB by computing the
expectation 〈θi〉 for each and every tuple in the database,
in polynomial time. Therefore, B-PDBs are a conservative
generalization of TI-PDBs that add a principled way to up-
date the parameters, which is the main focus of our paper.
The first table of Figure 1 shows the tuples’ marginal proba-
bilities inside column 〈θ〉. This column is shown for readers’
convenience only; it is not explicitly stored in a B-PDB. It
is immediate to verify that the given B-PDB is equivalent,
in terms of query processing, to the relation Rp introduced
in Example 1.

Beyond estimating tuples’ probabilities B-PDBs can also
evaluate the confidence of such estimates. In the remainder
of this paper we adopt the differential entropy h [θi] as a
metric for the confidence of the B-PDB’s estimates of P[xi].
By definition, the differential entropy of θi is:

h [θi]
def
= −

∫
p[θi] · ln(p[θi])dθi

The above integral admits a well-known [39, 15] closed form5.
Intuitively, the smaller h [θi] is the higher is the confidence
of the estimate of P[xi]. For readers’ convenience Figure 1
shows the differential entropies in the column h [θ]6.

In the following sections we will describe extensively how
B-PDBs support belief updates. We introduce the topic here
with a simple example. The second table in Figure 1 shows
the effect of performing a belief update to incorporate the
observation of a single, negative answer to the Boolean query
exists(select * from R where emp=’HP’). Intuitively, the
observation suggests that neither Ada nor Bob have worked
in the past for HP. We react to this new information by
adding a negative vote to both the first and the third tuple
in the B-PDB. The adjusted probability densities of θ1 and
θ3 are plotted on the left, in dashed green. Notice that the
update has a greater impact on p[θ3] rather than on p[θ1],
consistently with the fact that h [θ1] < h [θ3]. In the general
case, belief updates may involve thousands of queries, and
affect the parameters of a B-PDB in a non-trivial way.

In the remainder of this paper, we study (i) belief updates

5The closed solution is h [θi] = ln(B(ai, bi)) − [(ai − 1) · (ψ(ai) −
ψ(ai + bi))]− [(bi − 1) · (ψ(bi)− ψ(ai + bi)), where ψ(·) denotes the
Digamma function.
6As before, this information is given for readers’ convenience only and
does not need to be stored inside the B-PDB.

(Section 4) and (ii) parameter learning (Section 5) in great
detail; we show how to perform both when we observe an-
swers to an arbitrary set of conjunctive, self-join-free queries.

Our contributions include:

1. Bayesian belief updates. Given a B-PDB and a set
of queries’ results, we show how to incorporate the new
evidence into the B-PDB in a Bayesian fashion. We ana-
lyze the complexity of computing such Bayesian updates
and provide efficient algorithms for tractable classes of
queries.

2. Soft Expectation Maximization. We devise a soft-
EM algorithm for computing the maximum likelihood es-
timate of the parameters {θ1, . . . , θn} w.r.t. some given
queries’ results.

3. Benchmarks. We show how the algorithms we propose
can be easily embedded into a standard relational engine,
so to exploit its optimization features. We test our frame-
work against real (YAGO2) and synthetic (TCP-H) data
sets, annotated with probabilities.

2. BACKGROUND
In this section, we review some background notions and

contextualize B-PDBs w.r.t. previous work on probabilistic
databases. For the sake of conciseness, we use the following
notation: given a real number z we denote by z its comple-
ment (1− z). When ϕ is a Boolean expression ϕ denotes, as
usual, its negation ¬ϕ.

2.1 Relational Databases
A relational database consists of a finite collection of rela-

tions {R,S, T, . . .}, over a finite set of n tuples {x1, . . . , xn}.
A conjunctive query q is a first-order formula in prenex
normal form, respecting the following restrictions: (i) each
predicate symbol represents a relation, (ii) all variables are
either existentially quantified or quantifier-free, (iii) the for-
mula is negation-free and (iv) disjunction-free. We use capi-
tal letters to denote first-order logic variables. For example:

q(Z) = ∃X ∃Y R(X,Y ) ∧ S(X,Z) (4)

We denote by hvar(q) the set of free (“head-”) variables of q,
and by evar(q) the set of existentially quantified variables.
A conjunctive query is said to be self-join-free iff every re-
lation name appears at most once; it is said to be Boolean
iff there are no free variables. Given a database instance
D, every non-Boolean conjunctive query can be seen as a
collection of Boolean queries, one for each of the possible
grounding of the free variables to values in their active do-
main [2]. In the remainder of this paper we assume queries
are always conjunctive and self-join-free. With limited abuse
of notation we will denote non-Boolean queries as vectors (q)
and Boolean ones as indexed vectors’ components (qj) that
range over the groundings of q. Given a database instance D
and a Boolean query q, we denote by ΦD(q) the lineage [5, 7,
23] of q, a propositional Boolean formula over the alphabet
{x1, . . . , xn}, built by the following recursive rules:

• ΦD(q) = ΦD(q′1) ∨ . . . ∨ ΦD(q′k) when q = ∃X q′, and
hvar(q′) = {X} and {q′1, . . . , q′k} are the groundings of q′

obtained by replacing X with one of the constants in its
active domain
• ΦD(q) = ΦD(q′) ∧ ΦD(q′′) when q = q′ ∧ q′′



• ΦD(q) = xi, when q is a ground atom of tuple xi
7

A lineage expression ϕ is said to be read-once iff each lit-
eral appears at most once. It is straightforward to extend
the definition of lineage to query answers: if ϕ is the lineage
of q then the answer > has lineage ϕ, while the answer ⊥ has
lineage ϕ. In the following we often identify Boolean queries
with their lineage. For the sake of compactness we some-
times omit the ∧ symbol in lineage expressions (therefore,
x1x2 is an abbreviation for x1 ∧ x2) and use the common
Datalog notation to express conjunctive queries; for exam-
ple: q(Z) :−R(X,Y ), S(X,Z).

Given a variable X and a query q, we denote by at(X,q)
the set of q’s atoms where X appears. Variables that appear
in every atom of q are called root variables. We say that a
query q is hierarchical iff, for any two existential variables
(X,Y ), either at(X,q) ⊆ at(Y,q) or at(Y,q) ⊆ at(X,q) or
at(X,q) ∩ at(Y,q) = ∅ holds.

Example 1 (continued) The query q from Equation (4)
is hierarchical; the set of head-variables hvar(q) contains
only Z, while evar(q) consists of {X,Y }. X is a root vari-
able, but Y is not. Let D be a database instance where the
relations R and S are defined as follows:

R
name emp tid
Ada HP x1

Ada IBM x2

Bob HP x3

S
name lng tid
Ada eng x4

Bob eng x5

Bob ita x6

Within D the active domain of Z is {eng, ita}. Therefore
query q can be seen as a collection of two Boolean queries:

q1 :−R(X,Y ), S(X, eng). q2 :−R(X,Y ), S(X, ita).

Their lineage expressions are:

ΦD(q1) = x1x4 ∨ x2x4 ∨ x3x5 ΦD(q2) = x3x6

The lineage of q2 is read-once, while the lineage of q1 is not,
as the literal x4 is used twice (we will later show how to
obtain a read-once expression for q1).

We define query plans as sentences respecting the follow-
ing grammar:8

P ::= R | πX(P ′) | σ(P ′) | ./
[
P ′, P ′′, . . .

]
where R denotes an arbitrary relation name and projections
(π), selections (σ) and natural joins (./) have the usual se-
mantics. It is straightforward to extend the notation we use
for queries to query plans: if P denotes a plan, then hvar(P )
is the set of attributes in its output schema, while evar(P )
denotes the set of attributes that are projected-away. In the
following we write π−X(P ) as short form for πhvar(P )\{X}(P ).
A plan P is Boolean when hvar(P ) is empty. Given a
database instance D, a non-Boolean plan P can be seen as a
collection of Boolean plans {P1, . . . , Pk}, one for each of its
output-tuples. Each plan in {P1, . . . , Pk} is obtained from
P by substituting its head variables by the constants of the
respective output-tuple. A query plan always corresponds

7In this paper “atoms” are atomic first-order logic formulas. For ex-
ample, the query from Equation (4) contains two atoms, R(X,Y ) and
S(X,Y ). An atom is ground when it has no variables: R(’Ada’, ’HP’).
8 W.l.o.g. we assume the query to consist of only variables and don’t
write the constants. Selections can always be directly pushed into the
database before executing the query.

to exactly one query, but one query may have multiple dis-
tinct query plans. Two query plans are logically equivalent
if they answer the same query. Given a database instance
D and a Boolean plan P we denote by ΦD(P ) the lineage
of P , a Boolean expression built according to the following
recursive rules:

• If P = R then ΦD(P ) = x where x identifies the grounded
tuple in R.
• If P = P ′ ./ P ′′ then ΦD(P ) = ΦD(P ′) ∧ ΦD(P ′′).
• If P = π∅ (σ (P ′)) then ΦD(P ) = ΦD(P ′1)∨ΦD(P ′2)∨ . . .∨

ΦD(P ′k) assuming that {P ′1, P ′2, . . . , P ′k} are the Boolean
plans corresponding to the output-tuples of σ (P ′).

If plan P answers query q, then ΦD(P ) is logically equiv-
alent to ΦD(q), for every D.

Example 1 (continued) Both the following query plans

P ′ = π−X(π−Y (R) ./ S) P ′′ = π−XY (R ./ S)

compute the correct answer for query q from Equation (4),
but they produce different lineage expressions:

P ′

lng ΦD
eng ((x1 ∨ x2) x4) ∨ x3x5

ita x3x6

P ′′

lng ΦD
eng x1x4 ∨ x2x4 ∨ x3x5

ita x3x6

Notice that all the lineage expressions produced by P ′ are
read-once and logically equivalent to the corresponding lin-
eage expressions of q and P ′′.

2.2 Tuple-independent Probabilistic
Databases

A tuple-independent probabilistic database (TI-PDB) is
a regular relational database where each tuple represents
an independent probabilistic event. Each tuple xi is associ-
ated with a Bernoulli-distributed Boolean random variable,
expected to be true with probability θi and false with prob-
ability θi. It represents the belief that tuple xi belongs to
the database. In slight abuse of notation we use xi to de-
note both a tuple and its associated Boolean random vari-
able; we use the vector notation θ to denote the whole set
of parameters {θ1, . . . , θn}. Unlike deterministic databases,
the state of a TI-PDB is uncertain: the set of its plausi-
ble states (its “possible worlds”) ranges over the power-set
of its tuples. Hence, a possible world consists of a subset
of tuples, generated by including each tuple xi with prob-
ability θi. A TI-PDB D defines a probability measure P[·]
over possible worlds and Boolean queries. If w is a possi-
ble world, we denote by w[i] a function that returns 1 when
tuple xi belongs to w, and 0 otherwise. The probability of

w is P[w|D]
def
=
∏
i:w[i]=1 θi ·

∏
i:w[i]=0 θi, the probability of

drawing its tuples independently; if q is a Boolean query,
its marginal probability is the sum of all possible worlds

where q is satisfied: P[q|D]
def
=
∑
w|=q P[w]. If ϕ is a lineage

expression, we denote by P[ϕ|D] the probability of ϕ being
satisfied, given that each literal xi is true with probability
θi and false otherwise. Notice that P[q|D] = P[ϕ|D] when
ϕ = ΦD(q).

TI-PDBs are often associated with Probabilistic Relational
Algebra (pRA) [18], a generalization of positive relational
algebra that consists of three probabilistic operators: inde-
pendent projection (πp), independent join (./p) and selection
(σ). These operators differ from standard relational algebra



in the fact that they associate a score to each output tuple.
Let P be the Boolean plan associated with an arbitrary out-
put tuple; its score is computed according to the following
recursive rules:

• If P identifies a tuple xi then score(P ) = θi
• If P = P ′ ./p P ′′ then score(P ) = score(P ′) · score(P ′′)
• If P = σ(P ′) then score(P ) = score(P ′)
• If P = πp

∅ (P ′) then

score(P ) = 1−
[
(1− score(P ′1)) · . . . · (1− score(P ′k))

]
assuming that {P ′1, . . . , P ′k} are the plans corresponding
to the output-tuples of P ′. For the sake of conciseness we
adopt the independent-or (⊗) operator:

score(P )
def
= score(P ′1)⊗ . . .⊗ score(P ′k)

def
=
⊗

i∈{1,...,k}

[
score(P ′i )

]
Let’s assume P ′ and P ′′ are two plans answering the Boolean
queries q′ and q′′, respectively, and P[q′|D] = score(P ′) and
P[q′′|D] = score(P ′′). Notice that P[q′∧q′′|D] = score(P ′ ./p

P ′′) holds, but only if q′ and q′′ represent independent events.
Similar considerations apply to πp: if P ′ and P ′′ are the
output-tuples of the plan P , then the equivalence P[q′ ∨
q′′|D] = score(πp

∅(P )) holds only if q′ and q′′ represent in-
dependent events. The probabilistic independence between
q′ and q′′ is guaranteed when their lineages do not share
any literal. We can conclude that an arbitrary pRA plan
P computes the correct marginal probabilities only when
all its intermediate results consist of pairwise independent
events. A plan respecting such property is said to be “safe”
and its lineage expressions are guaranteed to be read-once.
The following Lemma summarizes a variety of results about
probabilistic query processing over TI-PDBs

Lemma 1 [9, 10, 21, 41] Let q be a self-join-free conjunc-
tive query consisting of k Boolean queries {q1, . . . , qk}. The
following statements are equivalent:

1. Query q is hierarchical.
2. For any D, query q admits a safe pRA plan.
3. For any D and qj ∈ q, the lineage of qj admits a read-

once representation.
4. For any D and qj ∈ q, computing P[qj |D] takes polyno-

mial time in the size of D.

Deciding any (all) of the above properties (finding a certifi-
cate, if any exists) takes polynomial time in the size of q. If
such test fails (i.e. no certificate exists), then anwering q is
#P -hard.

Example 1 (continued) We can turn the relations R and
S into a TI-PDB by annotating each tuple with a probability,
that we store in a dedicated column named θ.

Rp

name emp tid θ
Ada HP x1 0.6
Ada IBM x2 0.6
Bob HP x3 0.5

Sp

name lng tid θ
Ada eng x4 0.4
Bob eng x5 0.2
Bob ita x6 0.6

We can rewrite the plans P ′ and P ′′ in terms of pRA:

P ′ = πp
−X(πp

−Y (Rp) ./p Sp) P ′′ = πp
−XY (Rp ./p Sp) (5)

They both produce the same output-tuples, but different scores:

P ′

lng score
eng ((θ1 ⊗ θ2) θ4)⊗ θ3θ5 = 0.4024
ita θ3θ6 = 0.3

P ′′

lng score
eng θ1θ4 ⊗ θ2θ4 ⊗ θ3θ5 = 0.48016
ita θ3θ6 = 0.3

Notice that plan P ′ is safe, while P ′′ is not: the correct value
of P[q1|D] is 0.4024, it is not 0.48016.

In conclusion, pRA is guaranteed to be sound only when
dealing with hierarchical queries. Dalvi and Suciu [9] de-
veloped a well-known algorithm to identify safe plans for
hierarchical queries. Other techniques, like [8, 30, 34, 17],
must be used to answer non-hierarchical queries.

3. BETA PROBABILISTIC DATABASES
In this section we introduce Beta probabilistic databases

(B-PDBs), our new generalization of TI-PDBs, based on
the idea of imposing a prior distribution over the parame-
ters θ. In the resulting model, each parameter θi becomes
an independent random variable, whose probability density
function follows a Beta distribution Be(ai, bi) determined
by two hyper-parameters, ai and bi. We use a and b to de-
note the corresponding n-vectors of hyper-parameters, and

H def
= (a,b) to denote a B-PDB instance (the relational struc-

ture of H is assumed to be fixed and, for the sake of con-
ciseness, it is never mentioned explicitly). Then:

p[θi|H]
def
= Be(ai, bi) (6)

p[θ|H]
def
=

n∏
i=1

p[θi|H], (7)

where Be(a, b) denotes the probability density function of a
Beta distribution:

Be(a, b) def
= θa−1 · θb−1 · B(a, b)−1

In terms of graphical models, one can see a B-PDB as a
collection of n independent Boolean variables, distributed
according to n independent Beta-Bernoulli compound dis-
tributions:

θi ∼ Beta(ai, bi) xi ∼ Bernoulli(θi)

Given an arbitrary function f(θ) and a distribution p[θ] we
denote by 〈f〉p[θ] the expected value of f , assuming θ is sam-
pled from p[θ]. Just like TI-PDBs, B-PDBs define a proba-
bility measure over possible worlds and Boolean queries:

P[xi|H]
def
=

∫ 1

0

θi · Be(ai, bi) dθi (8)

P[w|H]
def
=

n∏
i=1

P[xi|H]w[i] · P[xi|H]
w[i]

(9)

P[ϕ|H]
def
=

∑
w: w|=ϕ

P[w|H] (10)

Equations 8, 9 and 10 denote, respectively, the probability
of a literal, the probability of a possible world, and the prob-
ability of a Boolean query. Notice that ϕ may represent the
lineage of the answer to a non-Boolean query. For exam-
ple, if we submit a non-Boolean query q consisting of three



Boolean queries [ϕ1, ϕ2, ϕ3], the probability of observing the
answer [⊥,>,⊥] is P[ϕ1ϕ2ϕ3|H].

In practical terms, B-PDBs differ from TI-PDBs in that
each tuple is annotated with two R+-valued parameters,
rather than with a single probability measure (compare, for
example, the table at the top of Figure 1 with the proba-
bilistic relation Rp discussed in Example 1). Notice that the
marginal probability of xi can be computed as [32]

P[xi|H] =

∫ 1

0

θi · Be(ai, bi) dθi = 〈θi〉H = ai
ai+bi

(11)

From Equation (11) it follows immediately that vector 〈θ〉H
of expected tuple probabilities under H, represents the pa-
rameters of a TI-PDB that behave identically to the B-PDB
H when it comes to query processing. In other words, the
mapping H → 〈θ〉H allows us to immediately re-use all
the standard query processing techniques developed for TI-
PDBs, like pRA [18], Monte Carlo simulations [8, 30, 34],
anytime approximations [17], dissociations [19, 20], lineage-
based methods [23] and many others.

Given two queries ϕ and ϕ′, we denote by P[ϕ|ϕ′,H] the
probability of observing ϕ being true in a possible world of
H that already satisfies ϕ′:

P[ϕ|ϕ′,H]
def
= P[ϕ∧ϕ′|H]

P[ϕ′|H]
(12)

We denote by p[θ|ϕ,H] the posterior probability density
function of θ w.r.t. ϕ:

p[θ|ϕ,H]
def
=
p[θ, ϕ|H]

P[ϕ|H]
=

P[ϕ|θ] · p[θ|H]

P[ϕ|H]
(13)

Notice that P[ϕ|θ] represents the probability of observing ϕ
being satisfied by a TI-PDB with parameters θ.

3.1 Multiple independent observations
Given a B-PDB H and a positive integer s, we denote by
Hs the distribution obtained by replicating the model of H
exactly s times. In other words, Hs represents the distribu-
tion of a set of s possible worlds drawn independently from
H. Figure 2 depicts model Hs using plate notation, and
compares it with the model induced by TI-DBs. Within a
model Hs, we denote by x`,i and θ`,i the pairs of random
variables associated with the i-th tuple of the `-th possible
world. Therefore

θ`,i ∼ Beta(ai, bi) x`,i ∼ Bernoulli(θ`,i)

We denote by x(·,i) the s-vector (x1,i, . . . , xs,i), by x(`,·) the
n-vector (x`,1, . . . , x`,n) and by x(·,·) the s-by-n matrix con-
taining all the Boolean random variables of the model. We
adopt similar conventions for defining the semantics of θ(·,i),
θ(`,·) and θ(·,·). Given an integer t such that 0 ≤ t ≤ s, we
denote by P[ϕt|Hs] the probability of observing a set of s
independent possible worlds from H where ϕ is satisfied ex-
actly t times:

P[ϕt|Hs] def
=

(
s

t

)
· P[ϕ|H]t · P[ϕ|H]s−t

The posterior probability density of θ(·,·) w.r.t. Hs and evi-
dence ϕt is

p[θ(·,·)|ϕt,Hs]
def
=

=

(
s
t

)∏t
`=1 P[ϕ|θ(`,·)] ·

∏s
`=t+1 P[ϕ|θ(`,·)] ·

∏s
`=1 p[θ(`,·)|H]

P[ϕt|Hs]

Notice that the above formula generalizes Equation (13).
Given a positive integer k, we denote by Hs,k the probabil-
ity distribution obtained by replicating Hs exactly k times.
Equivalently, Hs,k represents the distribution of a set of
s · k possible worlds sampled independently from H. We
extend our notation accordingly, denoting by xj,`,i and θj,`,i
the random variables associated with the (js + `)-th pos-
sible world. Given a set of k distinct Boolean expressions
{ϕ1, . . . , ϕk} and k integers {t1, . . . , tk} between 0 and s, we
denote by E = {ϕt11 , . . . , ϕ

tk
k } the event of observing each ϕj

in {ϕ1, . . . , ϕk} being satisfied exactly tj over the s possible
worlds {x(j,1,·), . . . , x(j,s,·)}. Its likelihood is

P[E|Hs,k]
def
=

k∏
j=1

P[ϕ
tj
j |H

s]

The posterior probability density of θ(·,·,·) w.r.t. Hs,k and

evidence E = {ϕt11 , . . . , ϕ
tk
k } is

p[θ(·,·,·)|E ,Hs,k]
def
=

k∏
j=1

p[θ(j,·,·)|ϕ
tj
j ,H

s]

Example 2 Let’s assume we have a B-PDB H with two
tuples, x1 and x2, and k = 2 queries: ϕ1 = x1 ∧ x2 and
ϕ2 = x1 ∨ x2. Then:

• P[ϕ1 ∧ ϕ2|H] = 〈θ1〉H · 〈θ2〉H
• P[ϕ1|ϕ2,H] = (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)−1

• P[ϕ1|H2] = 2 · (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)
• P[ϕ1, ϕ2|H1,2] = (〈θ1〉H · 〈θ2〉H) · (〈θ1〉H ⊗ 〈θ2〉H)

From Equation (11) it is straightforward to derive the fol-
lowing Lemma:

Lemma 2 For any arbitrary evidence E = {ϕt11 , . . . , ϕ
tk
k }

the likelihood function P[E|Hs,k] respects the following prop-
erties:

1. If Ha and Hb are two B-PDBs such that 〈θ〉Ha = 〈θ〉Hb
then P[E|Ha] = P[E|Hb].

2. Let H be a B-PDB and D a TI-PDB with parameters
θ∗: if θ∗ = 〈θ〉H then P[E|Hs,k] = P[E|Ds,k], where Ds,k
denotes the distribution obtained by drawing s · k inde-
pendent samples from D.

The next two sections are dedicated to two specific opera-
tions supported by B-PDBs, that involve the computation of
the posterior p[θ(·,·,·)|E ,Hs,k]: belief updating and maximum
likelihood estimation. We introduce their formal definition
here:

Definition 1 (Belief updating) Given a B-PDB H and
an evidence event E = {ϕt11 , . . . , ϕ

tk
k }, belief updating is

the process of identifying the B-PDB Ĥ that minimizes the
relative entropy between the posterior p[θ(·,·,·)|E ,Hs,k] and

the prior p[θ(·,·,·)|Ĥs,k]. Belief updating is discussed in Sec-
tion 4.

Definition 2 (Maximum likelihood estimation) Given
some evidence E = {ϕt11 , . . . , ϕ

tk
k }, maximum likelihood es-

timation is the problem of identifying a local maximum of
the likelihood function P[E|Hs,k]. Maximum likelihood esti-
mation is discussed in Section 5.



4. BELIEF UPDATING
The goal of belief updating is to adjust the parameters a

and b so to incorporate some new, previously unseen, ev-
idence. As an analog, consider how one updates a Beta
distribution directly. A single piece of evidence (a coin flip
or “vote”) increments either the a or b parameter by 1. Ob-
serve that the updating process for simple Beta distributions
depends not only on the evidence itself (heads or tails), but
also the weight of that evidence (a single unbiased sample).
For example, if the evidence had consisted of two identical
coin flips, we would increment the parameter by 2. We be-
gin with a simple case of belief updates where the evidence
consists of one vote (s = 1) regarding a single output tu-
ple (k = 1). In the trivial case where feedback is applied
directly to a ground atom xi, the reader may see that our
approach degenerates to incrementing either ai or bi.

We then parallelize this approach in two dimensions: We
allow a single belief update to simultaneously learn from
multiple votes (s > 1) about multiple tuples (k > 1). Specif-
ically, if H denotes the current state of the our B-PDB and
if E = {ϕt11 , . . . , ϕ

tk
k } is the new evidence we observe, our

goal is to identify a new state Ĥ def
= (â, b̂) that minimizes the

relative entropy between p[θ(·,·,·)|E ,Hs,k] and p[θ(·,·,·)|Ĥ].

4.1 Simple case: s = k = 1

When s = k = 1 holds and E = {ϕ}, Ĥ is supposed to min-
imize the relative entropy between the posterior p[θ|ϕ,H]

and the prior p[θ|Ĥ]. Since every tuple of Ĥ is indepen-
dent from the others, it is sufficient to minimize the relative
entropy between p[θi|ϕ,H] and p[θi|Ĥ] for each and every
tuple. The first step in this direction is to compute the
marginal posterior p[θi|ϕ,H]. The following theorem ad-
dresses this specific problem.

Theorem 1 The marginal posterior probability of random
variable θi, given hypothesis H and evidence E = {ϕ}, can
be computed as follows:

p[θi|ϕ,H] = P[xi|ϕ,H] · Be(ai + 1, bi)

+ P[xi|ϕ,H] · Be(ai, bi + 1)

Proof. The proof is given in Appendix B.

Theorem 1 states that p[θi|ϕ,H] is a mixture of Beta distri-
butions. It is well known that the Beta distribution is the
conjugate prior of the Bernoulli distribution. Consequently,
the posterior of a Beta-Bernoulli compound distribution is

ϕxθ ϕ

n
s

ϕjxθ

b

a

ϕ

n
s

Figure 2: Comparison between a regular TI-PDB (left) and a
B-PDB (right) when k = 1, using plate notation. TI-PDBs as-
sociate each tuple xi with a single Boolean, Bernoulli-distributed
random variable, whose probability mass function depends on a
single parameter (θi). B-PDBs associate each tuple with two
random variables: θi, which is [0, 1]-valued and Beta-distributed
with hyper-parameters (ai, bi), and xi, which is Boolean-valued
and Bernoulli-distributed. For both TI-PDBs and B-PDBs the
evidence consists of observed query answers, that here are mod-
eled by the observable variable ϕ.

guaranteed to be Beta-distributed. Within a B-PDB we can
exploit such property whenever we can infer the value of
some random variable xi from the evidence; this is formal-
ized by the following Corollary:

Corollary 1 In a B-PDB H the conjugancy property holds
if and only if the random variable xi is fully observable from
the evidence:

p[θi|ϕ,H] =

{
Be(ai + 1, bi) if ϕ |= xi

Be(ai, bi + 1) if ϕ |= xi

Corollary 1 suggests a very intuitive interpretation of the
marginal posterior p[θi|ϕ,H]: it can be seen as a random
process in which we first make a guess about the value taken
by xi in the evidence and then we select the appropriate
conjugate prior. Notice that the complexity of computing
p[θi|ϕ,H] depends on the complexity of computing condi-
tional probabilities in the form P[x|ϕ,H]. This problem is
discussed extensively in Section 6; for the moment we just
observe that it is #P-complete in the general case.

Now that we know how to compute the marginal pos-
terior p[θi|ϕ,H], we can move our attention to the prob-

lem of computing an update H → Ĥ that minimizes the
relative entropy between p[θi|ϕ,H] and the marginal prior

p[θi|Ĥ]
def
= Be(âi, b̂i). We denote such measure with KLdiv

i :

KLdiv
i =

∫ 1

0

p[θi|ϕ,H] · ln

(
p[θi|ϕ,H]

p[θi|Ĥ]

)
dθi

Notice that p[θi|Ĥ] belongs to the exponential family, and its
sufficient statistics are ln θi and ln θi. Therefore, if we want
to minimize the relative entropy KLdiv we have to choose
(âi, b̂i) so that the expected value of (ln θi, ln θi) w.r.t. P[θi|Ĥ]
matches the expected value of the same statistics computed
w.r.t. P[θ|ϕ,H]. This well-known criterion is formalized in
the following definition and justified in Proposition 19:

Definition 3 We denote by bfit(ai, bi, ϕ) the pair of param-

eters (â∗i , b̂
∗
i ) satisfying the following two equations:{∫ 1

0
Be(â∗i , b̂∗i ) ln θi dθi =

∫ 1

0
p[θi|ϕ,H] ln θi dθi∫ 1

0
Be(â∗i , b̂∗i ) ln θi dθi =

∫ 1

0
p[θi|ϕ,H] ln θi dθi

(14)

or, in terms of expectations:{
〈ln θi〉Be(â∗i ,b̂∗i ) = 〈ln θi〉p[θi|ϕ,H]

〈ln θi〉Be(â∗i ,b̂∗i ) = 〈ln θi〉p[θi|ϕ,H]

(15)

Proposition 1 When (âi, b̂i) = (â∗i , b̂
∗
i ) = bfit(ai, bi, ϕ) the

relative entropy between the posterior p[θi|ϕ,H] and the Beta

distribution P[θi|Ĥ] is minimized.

Proof. The relative entropy between p[θi|ϕ,H] and p[θi|Ĥ]

9A similar, more general result is proved in [28] for all the distribu-
tions in the exponential family.



can be expressed as follows:

KLdiv
i =

∫ 1

0

p[θi|ϕ,H] · ln

(
p[θi|ϕ,H]

p[θi|Ĥ]

)
dθi

= h [p[θi|ϕ,H]]−
∫ 1

0

p[θi|ϕ,H] · ln
(
p[θi|Ĥ]

)
dθi

= h [p[θi|ϕ,H]] + ln(B(âi, b̂i))+

−
∫ 1

0

p[θi|ϕ,H] · ln
(
θâi−1
i · θi

b̂i−1
)
dθi

= h [p[θi|ϕ,H]] + ln(B(âi, b̂i))+

−
∫ 1

0

p[θi|ϕ,H] · (âi − 1) · ln θi dθi+

−
∫ 1

0

p[θi|ϕ,H] · (b̂i − 1) · ln θi dθi

= h [p[θi|ϕ,H]] + ln(B(âi, b̂i))+

− (âi − 1) · 〈ln θi〉p[θi|ϕ,H]+

− (b̂i − 1) · 〈ln θi〉p[θi|ϕ,H]

The gradient of KLdiv
i w.r.t. (âi, b̂i) is:

∇KLdiv
i =


∂KLdivi
∂âi

∂KLdivi
∂b̂i

 =

〈ln θi〉p[θi|Ĥ] − 〈ln θi〉p[θi|ϕ,H]

〈ln θi〉p[θi|Ĥ] − 〈ln θi〉p[θi|ϕ,H]



The Hessian of KLdiv
i w.r.t. (âi, b̂i) is positive semidefinite:

Hess[KLdiv
i ] = ∇∇KLdiv

i

=

ψ′(âi)− ψ′(âi + b̂i) −ψ′(âi + b̂i)

−ψ′(âi + b̂i) ψ′(b̂i)− ψ′(âi + b̂i)


Where ψ′(·) denotes the Trigamma function. The thesis
follows immediately.

Finally, we observe that the relative entropy between p[θ|ϕ,H]

and p[θ|Ĥ], that we denote with KLdiv, is simply the sum of
the tuple-wise KL divergences:

KLdiv =

∫
..

∫
p[θ|ϕ,H] · ln

(
p[θ|ϕ,H]

p[θ|Ĥ]

)
dθ =

n∑
i=1

KLdiv
i

4.2 General case
First we address the case where k = 1, s > 1 and E =
{ϕt}. Under these assumptions the goal of belief updat-
ing is to minimize the KL divergence between p[θ(·,·)|ϕt,Hs]
and p[θ(·,·)|Ĥs]. Since the tuples of Ĥ are pairwise indepen-
dent, it is sufficient to minimize the relative entropy between
p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs] for every i in {1, . . . , n}. As
usual θ(·,i) denotes the vector (θ1,i, . . . , θs,i). Its probability

density w.r.t. Ĥs is

p[θ(·,i)|Ĥs] =
s∏
`=1

p[θ`,i|Ĥ] (16)

while its posterior density w.r.t. Hs and evidence {ϕt} is

p[θ(·,i)|ϕt,Hs] =
t∏
`=1

p[θ`,i|ϕ,H] ·
s∏

`=t+1

p[θ`,i|ϕ,H] (17)

where p[θ`,i|ϕ,H] and p[θ`,i|ϕ,H] are computed according
to Theorem 1. We now redefine KLdiv

i as the relative entropy
between p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs]:

KLdiv
i =

∫ 1

0

..

∫ 1

0

p[θ(·,i)|ϕt,Hs] ln

(
p[θ(·,i)|ϕ

t,Hs]

p[θ(·,i)|Ĥs]

)
dθ(·,i)

Definition 4 We denote by bfit(ai, bi, {ϕt}, s) the pair of

parameters (â∗i , b̂
∗
i ) satisfying the following two equations:{

〈ln θi〉Be(â∗i ,b̂∗i ) = t
s
〈ln θi〉p[θi|ϕ,H] + s−t

s
〈ln θi〉p[θi|ϕ,H]

〈ln θi〉Be(â∗i ,b̂∗i ) = t
s
〈ln θi〉p[θi|ϕ,H] + s−t

s
〈ln θi〉p[θi|ϕ,H]

Proposition 2 When (âi, b̂i) = (â∗i , b̂
∗
i ) = bfit(ai, bi, {ϕt}, s)

the relative entropy between p[θ(·,i)|ϕt,Hs] and p[θ(·,i)|Ĥs] is
minimized.

Proof.

KLdiv
i =

∫ 1

0

..

∫ 1

0

p[θ(·,i)|ϕt,Hs] ln

(
p[θ(·,i)|ϕ

t,Hs]

p[θ(·,i)|Ĥs]

)
dθ(·,i)

=

t∑
`=1

[∫ 1

0

p[θ`,i|ϕ,H] ln

(
p[θ`,i|ϕ,H]

p[θ`,i|H]

)
dθ`,i

]
+

+

s∑
`=t+1

[∫ 1

0

p[θ`,i|ϕ,H] ln

(
p[θ`,i|ϕ,H]

p[θ`,i|H]

)
dθ`,i

]
= h

[
p[Θ|ϕt,Hs]

]
+ s · ln(B(âi, b̂i))+

− (âi − 1) ·
[
t · 〈ln θi〉p[θi|ϕ,H] + (s− t)〈ln θi〉p[θi|ϕ,H]

]
− (b̂i − 1) ·

[
t · 〈ln θi〉p[θi|ϕ,H] + (s− t)〈ln θi〉p[θi|ϕ,H]

]
The gradient ∇KLdiv

i is zero when{
〈ln θi〉p[θi|Ĥ] = t

s
〈ln θi〉p[θi|ϕ,H] + s−t

s
〈ln θi〉p[θi|ϕ,H]

〈ln θi〉p[θi|Ĥ] = t
s
〈ln θi〉p[θi|ϕ,H] + s−t

s
〈ln θi〉p[θi|ϕ,H]

We can finally address the general case where k > 1, s >
1 and E = {ϕt11 , . . . , ϕ

tk
k }. Under these assumptions the

goal of belief updating is to minimize the KL divergence
between p[θ(·,·,·)|E ,Hs,k] and p[θ(·,·,·)|Ĥs,k], and is achieved

by minimizing the KL divergence between p[θ(·,·,i)|E ,Hs,k]

and p[θ(·,·,i)|Ĥs,k], for every i in {1, . . . , n}, where

p[θ(·,·,i)|Ĥs,k] =

k∏
j=1

p[θ(j,·,i)|Ĥs] (18)

p[θ(·,·,i)|E ,Hs,k] =

k∏
j=1

p[θ(j,·,i)|ϕ
tj
j ,H

s] (19)

Therefore, we can redefine KLdiv
i as the relative entropy be-

tween p[θ(·,·,i)|E ,Hs,k] and p[θ(·,·,i)|Ĥs,k]:

KLdiv
i =

∫ 1

0

..

∫ 1

0

p[θ(·,·,i)|E ,Hs,k] ln

(
p[θ(·,·,i)|E,H

s,k]

p[θ(·,·,i)|Ĥs,k]

)
dθ(·,·,i)

Definition 5 We denote by bfit(ai, bi, E , s, k) the pair of pa-

rameters (â∗i , b̂
∗
i ) satisfying the following two equations:{

〈ln θi〉Ĥ∗ =
∑
j

tj
ks
〈ln θi〉p[θi|ϕj ,H] +

s−tj
ks
〈ln θi〉p[θi|ϕj ,H]

〈ln θi〉Ĥ∗ =
∑
j

tj
ks
〈ln θi〉p[θi|ϕj ,H] +

s−tj
ks
〈ln θi〉p[θi|ϕj ,H]



Proposition 3 When (âi, b̂i) = bfit(ai, bi, E , s, k) the rel-

ative entropy between p[θ(·,·,i)|E ,Hs,k] and p[θ(·,·,i)|Ĥs,k] is
minimized.

The proof of Proposition 3 mimics the one of Proposition 2.
For the sake of conciseness we omit it. Before introducing
our belief update algorithm, we observe that the equations
from Definition 5 can be rewritten as follows:{

[ψ(â∗i )− ψ(â∗i + b̂∗i )]− [ψ(ai)− ψ(ai + bi)] = r
ai
− 1

ai+bi

[ψ(b̂∗i )− ψ(â∗i + b̂∗i )]− [ψ(bi)− ψ(ai + bi)] = r
bi
− 1

ai+bi

(20)

where r = 1
k

∑k
j=1

[
tj
s
P[xi|ϕj ,H] +

s−tj
s

P[xi|ϕj ,H]
]

and ψ(·)
denotes the Digamma function. From now on we denote by
bu(ai, bi, r) the values (â∗, b̂∗) that satisfy Equation (20).

We finally introduce Algorithm 1, that exploits Propo-
sitions 1 to 3 to perform s belief updates, in response to
arbitrary evidence E .

Algorithm 1: Belief Update

Data: Model H, evidence E = {ϕt11 , . . . , ϕ
tk
k }

1 for j ∈ {1, . . . , k} do
2 τj ← tj/s;
3 for i ∈ {1, . . . , n} do
4 ri ←

∑k
j=1

1
k

(τjP[xi|ϕj ,H] + τjP[xi|ϕj ,H])

5 (â∗i , b̂
∗
i )← bu(ai, bi, ri)

6 for i ∈ {1, . . . , n} do
7 ai ← â∗i
8 bi ← b̂∗i

Interestingly, Algorithm 1 allows us to update a B-PDB in
an incremental fashion: if the evidence is provided as a
stream of query-answers, dynamically changing over time
both in terms of queries and observed relative frequencies,
a B-PDB can incorporate such information by performing a
new belief update every time a new chunk of evidence be-
comes available. The idea of performing repeated Bayesian
updates is discussed in detail in the next section.

5. PARAMETER LEARNING (MLE)
In this section we show how to exploit our belief update

procedures to identify a local maximum of the likelihood
function P[E|Hs,k]. Our approach relies on the observa-
tion that belief updates can only increase the likelihood
P[E|Hs,k]; it is immediate to derive a soft-EM [11, 27] al-
gorithm that performs repeated belief updates until conver-
gence. First we show how a single belief update H → Ĥ∗
affects P[E|Hs,k]:

KLdiv =

∫
..

∫
p[θ(·,·,·)|E ,Hs,k] ln

[
p[θ(·,·,·)|E ,Hs,k]

p[θ(·,·,·)|Ĥs,k]

]
dθ(·,·,·)

=h
[
p[θ(·,·,·)|E ,Hs,k]

]
−
∫
..

∫
p[θ(·,·,·)|E ,Hs,k] ln p[θ(·,·,·)|Ĥs,k]dθ(·,·,·)

=h
[
p[θ(·,·,·)|E ,Hs,k]

]
−
∫
..

∫
p[θ(·,·,·)|E ,Hs,k] ln

p[E,θ(·,·,·)|Ĥ
s,k]

p[E|θ(·,·,·)]
dθ(·,·,·)

KLdiv =h
[
p[θ(·,·,·)|E ,Hs,k]

]
+ 〈p[E|θ(·,·,·)]〉p[θ(·,·,·)|E,Hs,k]+

− 〈ln p[E , θ(·,·,·)|Ĥs,k]〉ln p[θ(·,·,·)|E,Hs,k]

Notice that the pair (a∗,b∗) from Definition 5 is the value

of Ĥs,k that maximizes the quantity

〈ln p[E , θ(·,·,·)|Ĥs,k]〉ln p[θ|E,Hs,k]

which is a lower bound of the log-likelihood lnP[E|Ĥs,k].
Therefore, it is possible to apply the considerations from
[40] to justify several variants of the EM algorithm. In the
following we provide the pseudo-code of the classic, fully
Bayesian, soft-EM (here named Algorithm 2). Intuitively,
the “E-step” consists of the computation of the posterior
p[θ(·,·,·)|E ,Hs,k], while the “M-step” consists of the belief up-

date H → Ĥ∗.

Algorithm 2: Greedy-MLE

Data: Model H, evidence E = {ϕt11 , . . . , ϕ
tk
k }

1 for j ∈ {1, . . . , k} do
2 τj ← tj/s;
3 repeat
4 for i ∈ {1, . . . , n} do
5 ri ←

∑k
j=1

1
k

(τjP[xi|ϕj ,H] + τjP[xi|ϕj ,H])

6 (â∗i , b̂
∗
i )← bu(ai, bi, ri)

7 for i ∈ {1, . . . , n} do
8 ai ← â∗i
9 bi ← b̂∗i

10 until convergence;

Example 2 (continued) Let’s assume we are given a B-
PDB with two tuples, x1 and x2, and k = 2 queries: ϕ1 =
x1 ∧ x2 and ϕ2 = x1 ∨ x2. The initial state of the database,
H0, is

a1 = 1 a2 = 1 b1 = 3 b2 = 3

Query ϕ1 is observed to be satisfied t1 = 32 times over s =
100 samples, while ϕ2 is observed to be true t2 = 88 times.
Hence E = {ϕt11 , ϕ

t2
2 }, and the target marginal probabilities

for ϕ1 and ϕ2 are, respectively, τ1 = 0.32 and τ2 = 0.88.
Given an arbitrary B-PDB H, the likelihood of observing E
being generated by H is P[E|H100,2] =

=

(
100

32

)
P[ϕ1|H]32P[ϕ1|H]68 ·

(
100

88

)
P[ϕ2|H]88P[ϕ2|H]12

The likelihood is maximized when P[ϕ1|H] = τ1 and P[ϕ2|H] =
τ2. There are two values of θ that satisfy these conditions:
either θ = (0.8, 0.4), or θ = (0.4, 0.8). Figure 3 shows how
Algorithm 2 converges to one of the optimal values for θ:
the green dots represent the state of the database (in terms
of 〈θ1〉H and 〈θ2〉H) after each iteration of the cycle at lines
3-10. The starting point is 〈θ〉H = (0.25, 0.25).

It is important to notice that the likelihood function may
have several local maximums and even several global ones
(as in Figure 3). The only guarantee offered by Algorithm 2
is to converge to a local maximum.
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Figure 3: Convergence of Algorithm 2 towards a maximum like-
lihood estimate of (θ1, θ2). In general, the EM algorithm can
converge towards a local optimum.

6. COMPUTING CONDITIONAL
PROBABILITIES

Computing conditional probabilities in the form P[xi|ϕj ,H]
is a central requirement for both Algorithm 1 and Algo-
rithm 2. As discussed in Section 3, P[xi|ϕj ,H] denotes the
probability of observing tuple xi being present in a possible
world sampled from H that satisfies ϕj . In this Section we
study the computational complexity of deriving such prob-
ability. The following Theorem states that the dichotomy
identified by [10] (see Lemma 1) also applies to the compu-
tation of conditional probabilities in the form P[xi|ϕj ,H].

Theorem 2 Let ϕj represents the lineage of a Boolean con-
junctive query, and xi be one of its literals. In general, com-
puting the conditional probabilities P[xi|ϕj ,H] (or P[xi|ϕj ,H])
is #P-hard but it is in PTIME when ϕj is read-once.

Proof. The first assertion is proven by observing that

P[xi|ϕj ,H] = P[ϕj |xi,H] · P[xi|H]/P[ϕj |H] (21)

Notice that P[ϕj |xi,H] represents the marginal probabil-
ity of the formula obtained by replacing xi with > in ϕj .
We denote by (ϕj |xi) such formula, therefore P[(ϕj |xi)|H] =
P[ϕj |xi,H]. If ϕj is read-once then so is (ϕj |xi), therefore
computing the right-hand side of Equation (21) takes poly-
nomial time. We prove the second assertion by reduction:
let ϕj be a non-read-once expression, and {x1, . . . , xn} the
literals appearing in it; we want to reduce the problem of
computing P[ϕj |H] to the problem of computing conditional
probabilities in the form P[x|ϕ,H]. From Equation (21), it
is immediate to obtain

P[ϕj |H] = P[xi|H] · P[(ϕj |xi)|H]/P[xi|ϕj ,H] (22)

Since Equation (22) holds for any literal in {x1, . . . , xn}, we
can apply it n− 1 times and obtain:

P[ϕj |H] = P[x1|H]
P[x1|ϕj ,H]

· P[x2|H]
P[x2|(ϕj |x1 ),H]

· · ·

· · · P[xn−1|H]

P[xn−1|(ϕj |x1..xn−2
),H]
· P[(ϕj |x1..xn−1)|H]

Notice that the last factor consists of the probability of a
read-once boolean formula, as the expression (ϕj |x1..xn−1)
depends only on the literal xn. Therefore, if we have an

oracle able to compute conditional probabilities in the form
P[x|ϕ,H], we can compute P[ϕj |H] in polynomial time, by
making (n− 1) calls.

From Lemma 1 and Theorem 2 it follows immediately that
computing a single Bayesian update, to incorporate the an-
swer to a hierarchical query, takes polynomial time in data-
size. In the next Section we adapt the well-known algorithm
by Dalvi and Suciu [9] to the goal of computing Bayesian up-
dates extensionally, by means of “CP-plans”.

6.1 CP-plans: Extensional Evaluation of
P[xi|ϕj ,H] for Hierarchical Queries

Let q = [ϕ1, .., ϕk] be a non-Boolean hierarchical query.
Our goal is to compute P[xi|ϕj ,H] for every Boolean query
ϕj in {ϕ1, .., ϕk} and every literal xi appearing in ϕj . We
first show how to compute P[ϕj |H] and P[ϕj |xi,H] for ev-
ery ϕj and xi, extensionally. Once P[ϕj |H] and P[ϕj |xi,H]
are known, it is immediate to obtain P[xi|ϕj ,H] by Equa-
tion (21). A plan performing such computation is called
“CP-plan”. In order to represent CP-plans compactly, we
introduce a simple extension of pRA. In our algebra, a CP-
plan (P cp) is a sentence respecting the following grammar:

P cp ::= CP (Rp
0) | πc

X(P ′) | σc(P ′) | ./c
[
P ′, P ′′, . . .

]
Rp

0 represents an arbitrary TI-relation, where each tuple has
a unique identifier tid and is associated with a marginal
probability p. Let’s assume A is a key for Rp

0, consisiting
of all the attributes except for tid and p. The operator
CP (Rp) turns a TI-relation Rp

0 into a pair (Rp, Rcp), where

Rp(A, p)
def
= πA,p(R

p
0) Rcp(A, cp, lt)

def
= πRp.A,1,Rp.tid(R

p)

Intuitively, Rp is obtained from Rp
0 by projecting-away tid.

Rcp associates each tuple x of Rp with the conditional prob-
ability P[x|x], which is, by definition, equal to 1. All the
other operators of our algebra process pairs of relations in
the form (Rp, Rcp). Let B be a strict subset of A. If we
apply the projection operator πc

B to the pair (Rp, Rcp), we
obtain a pair of relations (Qp, Qcp), defined as follows:

Qp(B, p)
def
= πB,(1−Πagg(Rp.p))(R

p)

Qcp(B, cp, lt)
def
= πA,cpexp,Rcp.lt[(R

p ./A Rcp) ./B Qp]

Where Πagg(·) denotes the aggregate product and cpexp
def
=

1− (Qp.p ·Rcp.cp/Rp.p). The selection operator (σc) simply
applies the selection predicate to both Rp and Rcp. There-
fore, the statement (Qp, Qcp) = σc(Rp, Rcp) is equivalent to
the following RA plan:

Qp(A, p)
def
= σ(Rp) Qcp(A, cp, lt)

def
= σ(Rcp)

Let’s now assume we are given a collection of m relation
pairs {(Rp

1, R
cp
1 ), .., (Rp

m, R
cp
m)} and Ai = hvar(Rp

i ) \ {p}.
Let’s define A = ∪mi=1Ai. The statement (Qp, Qcp) = ./c

[(Rp
1, R

cp
1 ), .., (Rp

m, R
cp
m)] is equivalent to the following RA

plan:

Qp(A, p)
def
= πA,(Πmi=1R

p
i.p)

[./ [Rp
1, .., R

p
m]]

Vi(A, cp, lt)
def
= πA,cpexp,R

cp
i .lt

[./Ai [Qp, Rp
i , R

cp
i ]] ∀i ∈ {1..m}

Qcp(A, cp, lt)
def
= ]mi=1Vi

Here cpexp
def
= (Qp.p·Rcp

i .cp/R
p
i .p). Now that we have defined

all the operators of our algebra, we can show how to build



a CP-plan for a given hierarchical query. The method we
propose (Algorithm 3) is a straightforward adaptation of
the procedure by Dalvi and Suciu [9] for constructing safe
plans. Their algorithm is known to be sound and complete;
Algorithm 3 inherits both properties.

Algorithm 3: SafeCpPlan

Data: Hierarchical query q(..) :−R(..), S(..), . . .
1 if evar(q) = ∅ then
2 return CP (R) ./c CP (S) ./c . . .
3 else if q :−q′,q′′ and evar(q′) ∩ evar(q′′) = ∅ then
4 return SafeCpPlan(q′) ./c SafeCpPlan(q′′)
5 else if X ∈ evar(q) is a root variable then
6 return

πc
−X(SafeCpPlan(q′(X, hvar(q)) :−R(..), S(..), . . .))

Let (Qp, Qcp) be the result of a CP-plan generated by Algo-
rithm 3: if ϕj is the lineage of a tuple in Qp and its literals
are {x1, .., xm}, then Qcp is guaranteed to contain m copies
of such tuple, each copy being associated with a conditional
probability P[ϕj |xi], for every xi in {x1, .., xm}.

Example 1 (continued) If q denotes the hierarchical query
from Equation (4), then SafeCpPlan(q) returns the plan:

(Qp, Qpc) = πc
−X(πc

−Y (CP (R)) ./c CP (S))

Notice that Qp is equivalent to the TI-relation returned by
plan P ′ in Equation (5).

7. EXPERIMENTS
The goal of this section is to analyze the asymptotic be-

havior of Bayesian updates, and to experimentally verify
what we formally proved in Section 5. Our second goal is
to compare our approach against the existing literature on
parameter learning in P-DBs, especially [13, 14].
Experiment 1. This experiment focuses on parameter
learning. We adopt a TI-PDB with known parameters as
ground truth and process a fixed set of queries to gener-
ate the evidence. We then incrementally update our B-
PDB, and observe how well it models the evidence over
time. We also run TPDB10, a system developed by Dylla
and Theobald [13, 14], and compare the results. From now
on we denote with T the parameters of the ground-truth TI-
PDB, with Q a fixed set of conjunctive hierarchical queries,
with E the set of marginal probabilities of Q w.r.t. T (the
evidence), and with H the set of parameters learned by ei-
ther the B-PDB (a, b) or the TPDB (θ). Following [13], we
measure both systems’ performances in terms of their mean

squared error: MSE
def
= 1
|Q|
∑
ϕ∈Q (P[ϕ|H]− P[ϕ|T ])2. When

the MSE equals zero, the likelihood P[E|H] is maximized.
We mimic [13] for the choice of the data- and query-sets;
we use the query-sets P1, P2 and P3 as defined in Ap-
pendix A of [13], and reproduce the “scalability” experiment
over the YAGO211 knowledge base. As in [13], the ground-
truth T is set up by annotating each YAGO2 fact with a
random probability, uniformly chosen in [0, 1]. The proper-
ties of the resulting lineage formulas are summarized in Ta-
ble 1. TPDB provides three parameter learning algorithms,
based on direct minimization of the MSE objective function:

10http://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/software/tpdblearn/

11http://www.mpi-inf.mpg.de/yago-naga/yago/

gradient descent (GD), stochastic gradient descent (SGD),
and stochastic gradient descent with per-tuple learning rate
(SGD+). We tested all of them, measuring the evolution of
the MSE over time. Figures 4a to 4c report our findings.
Both systems were executed in single-threaded mode. The
execution time is measured in seconds, while the MSE is
reported in log-scale, so to emphasize the trajectories near
their convergence point. Our Bayesian-updating algorithm
is denoted as BU. Each point in the plot represents the exe-
cution of one iteration of Algorithm 1, over all the available
evidence. Over the three experiments we observe a common
behavior: BU follows a L-shape trajectory, characterized by
a fast-start where the MSE is greatly reduced in few iter-
ations; the algorithm then slows progressively down, as it
reaches its steady state. The three gradient-based methods,
on the other hand, exhibit a limited improving rate in the
first few iterations, followed by a speed-up as soon as they
reach a steep sector of the objective function surface. They
then slow down as they reach a local minimum of the MSE.
GD is consistently the fastest of the three in reaching the
fast-converging phase of the trajectory, but the less efficient
afterwards. Dylla and Theobald [13] analyze this behav-
ior in great detail. Overall, this experiment shows that the
strict semantics of Bayesian updates does not pose a burden
on performing MLE efficiently. Additionally, BU offers good
MLE performance without requiring the user to fine-tune
any parameter (like GD’s initial learning rate, for example).
Looking at the good performance of SGD+ on P3, we feel it
would be interesting to develop a stochastic variant of BU,
where only a randomly chosen portion of the evidence is
processed at each iteration.
Experiment 2. In this experiment we analyze the behav-
ior of B-PDBs under stress conditions. We use the dbgen

utility [1] to generate a set of relations, that we annotate
with synthetic probabilities. We use two query-sets, Q1 and
Q2. The former consists of queries Q3, Q4 and Q6 from the
TPC-H benchmark (this choice mirrors [4, 9]); the latter ex-
tends Q1 with 12 additional join/group-by queries, devoid
of any selection predicate. By varying the dbgen’s scaling
factor parameter (sf) between 0.1 and 1.0, we build sev-
eral instances of T , whose sizes range between 100 MB and
1 GB. Table 1 summarizes the properties of the resulting lin-
eage formulas. We designed this experiment to test several
corner-cases in the parameter learning problem: (i) having
large lineage formulas in E , (ii) having literals that appear
in many formulas, (iii) having a large number of formulas
in E . We replicate the same measurements as in Experi-
ment 1, but we run our prototype in multi-threaded mode.
Figures 4e and 4f show that the behavior of BU is very con-
sistent over multiple tests, as it follows the usual L-shaped
trajectory, drifting towards a local minimum of the MSE.
Figure 4d shows the speedup achieved by multi-threading.
Experiment 3. In this experiment we adopt a different

metric: MSE-IN
def
= 1

n

∑n
i=1 (P[xi|H]− P[xi|T ])2. Our goal is

to measure the ability of a B-PDB to rebuild the ground-
truth T by only looking at E . As exemplified in Figure 3,
identifying a global maximum of the likelihood does not
guarantee the ability of deriving T , as E may be implic-
itly ambiguous. One way to circumvent this problem is to
polarize the B-PDB’s priors towards T . The goal of this
experiment is to simulate such process. We repeat Experi-
ment 2 (with sf = 0.1), but we jump-start the BU algorithm
by setting up a fraction of the B-PDB’s parameters so to



data set YAGO YAGO YAGO TPCH TPCH TPCH TPCH TPCH TPCH
scaling factor - - - 0.1 0.1 0.5 0.5 1.0 1.0

query set P1 P2 P3 Q1 Q2 Q1 Q2 Q1 Q2

total # of Bool. queries 228,179 132,277 465,418 20,109 3,697,683 94,840 18.3 · 106 187,532 36.5 · 106

max lineage size 2,333 2,333 262 5,545 5,545 28,029 28,029 55,386 55,386
avg lineage size 2.220 2.715 3.745 7.156 3.304 8.617 3.340 8.977 3.346

total # of literals 217,860 217,860 1,742,928 765,572 765,572 3,824,671 3,824,671 7,651,215 7,651,215
total # of active literals 217,860 217,860 1,742,928 138,972 760,572 787,593 3,799,669 1,622,379 7,601,211

max # of inst. of a literal 13 2 1 4 610 7 663 7 693
avg # of inst. of a literal 2.325 1.648 1.0 1.0356 16.0662 1.0376 16.0916 1.0377 16.0981

Table 1: Statistics of the data- and query-sets used. A literal is said to be active when it appears in the lineage of at least one query.
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Figure 4: Experimental results: (a)-(c): Experiment 1. (d)-(f): Experiment 2. (g),(h): Experiment 3

mirror T , in a low-entropy configuration (a+ b = 106). The
results are shown in Figures 4g and 4h, where nr (noise ratio)
denotes the fraction of parameters that are set to random
values. Overall we observe that Bayesian updates do not
guarantee a steady decrease in MSE-IN, especially when the
evidence is too ambiguous (as in Q1). On the other hand,
we observe that better priors lead to better estimates of T .

8. RELATED WORK
Stoyanovich et al. [47] derive probability distributions for

the missing parts of incomplete databases, using the com-
plete parts as evidence. Dylla and Theobald [13] study the
problem of deriving the parameters of a TI-PDB from a set
of Boolean queries, labeled with their marginal probabili-
ties. They prove the problem is #P-hard in the general
case, and provide a sound criterion to identify problem in-
stances that admit a solution. Rather than computing a
maximum-likelihood estimate of the parameters, like we ad-
vocate in this paper, they propose to derive them by direct
minimization of the mean squared error. Their approach
does not consider Bayesian updates. Parameter learning has
been proposed in the context of Probabilistic Logic Program-
ming, either by minimizing the mean squared error [25] or by
maximum likelihood estimation [26]. It is also a central fea-
ture for many knowledge-based model construction (KBMC)
frameworks, including Probabilistic Relational Models [37],
Markov Logic [44], Multi-entity Bayesian Networks [38] and
many others. All the above approaches rely on probabilistic

models that are significantly more sophisticated than TI-
PDBs, but without the complexity guarantees provided by
the dichotomy theorem [10]. Koch and Olteanu [36] were
the first to address the problem of conditioning in proba-
bilistic databases. Their work relies on U-databases, while
ours focuses on TI-PDBs and hierarchical queries.

9. CONCLUSIONS AND FUTURE WORK
“Where do the probabilities come from?” is an often-asked

question related to probabilistic databases. The approach
suggested in this paper is to learn the parameters from sam-
pled query answers. We devise a method for incorporating
new evidence in an incremental fashion, by performing be-
lief updates as soon as new query answers are observed. A
fundamental ingredient to our approach is the use of Beta
distributions as priors: we show how to derive the poste-
rior distribution in closed form and how to update the pa-
rameters in a principled way. In the future we propose to
generalize our work by dropping the assumption on tuple
independence. We also plan to test alternative inference
methods to handle non-hierarchical queries, such as [19].
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APPENDIX
A. NOMENCLATURE
Symbol Meaning
H Beta Probabilistic DB
D Tuple-independent Probabilistic DB
p[·] Probability density function
P[·] Probability measure
〈f(θ)〉p[θ] Expected value of f(θ) when θ ∼ p[·]
h [·] differential entropy
E Evidence
Be(ai, bi) P.d.f. of a Beta distribution
a, b Parameters of the Beta distribution
B(·) Beta function
Γ(·) Gamma function
ψ(·) Digamma function
ψ′(·) Trigamma function
w Possible world
x1, . . . , xn Tuples / Boolean random variables
θ1, . . . , θn Tuples’ marginal probabilities
θ Vector (θ1, . . . , θn)

θi Abbreviation for (1− θi)
q1, . . . , qk Conjunctive queries
ϕ1, . . . , ϕk Lineage formulas
ϕj Abbreviation for ¬ϕj
tj Observed frequency of positive answers to ϕj
τj Observed relative freq. of positive answers to ϕj
k Number of queries
s Number of samples per query
n Number of tuples
R,S, T, . . . Relations’ names
X,Y, Z, . . . First-order logic variables
ADom(·) Active domain
hvar(qj) The head variables of query qj
evar(qj) The existential variables of query qj
T Ground-truth

Table 2: Nomenclature

B. PROOFS
Proof of Theorem 1. From the Bayes’ rule we have

that

p[θ|ϕ,H] =
p[θ, ϕ|H]

P[ϕ|H]
=

P[ϕ|θ] · p[θ|H]

P[ϕ|H]

Where

P[ϕ|θ] =
∑

w:w|=ϕ

P[w|θ] =
∑

w:w|=ϕ

[
n∏
i=1

θ
w[i]
i · θi

w[i]

]

p[θ|H] =

n∏
i=1

p[θi|H] =

n∏
i=1

θ
(ai−1)
i · θi

(bi−1)

B(ai, bi)

P[ϕ|H] =
∑

w:w|=ϕ

[
n∏
i=1

(
ai

ai + bi

)w[i]

·
(

bi
ai + bi

)w[i]
]

Hence

p[θ|ϕ,H] =
P[ϕ|θ] · p[θ|H]

P[ϕ|H]
= 1

P[ϕ|H]
·
∑

w:w|=ϕ

(P[w|θ] · p[θ|H])

First we want to prove that

P[w|θ] · p[θ|H] = P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

Expanding P[w|θ] and p[θ|H] in the LHS we obtain

P[w|θ] · p[θ|H] =

n∏
i=1

θ
w[i]
i · θi

w[i] ·
n∏
i=1

θ
(ai−1)
i · θi

(bi−1)

B(ai, bi)

=

n∏
i=1

θ
(ai+w[i])−1
i · θi

(bi+w[i])−1

B(ai, bi)

=

n∏
i=1

Be(ai + w[i], bi + w[i]) · B(ai + w[i], bi + w[i])

B(ai, bi)

=

n∏
i=1

Be(ai + w[i], bi + w[i]) · (ai)
w[i] · (bi)w[i] · Γ(ai + bi)

Γ(ai + bi + 1)

=

n∏
i=1

Be(ai + w[i], bi + w[i]) · (ai)
w[i] · (bi)w[i]

ai + bi

=

n∏
i=1

Be(ai + w[i], bi + w[i]) ·
(

ai
ai + bi

)w[i]

·
(

bi
ai + bi

)w[i]

= P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

Therefore we can express the posterior p[θ|ϕ,H] as follows:

p[θ|ϕ,H] = 1
P[ϕ|H]

·
∑

w:w|=ϕ

P[w|H] ·
n∏
i=1

Be(ai + w[i], bi + w[i])

=
∑

w:w|=ϕ

P[w|ϕ,H] ·

(
n∏
i=1

Be(ai + w[i], bi + w[i])

)

Notice that
∑
w:w|=ϕ P[w|ϕ,H] = 1, therefore the posterior

p[θ|ϕ,H] is a convex combination (a mixture) of products
of Beta distributions. When we marginalize it w.r.t. the
parameter θi, we obtain the following:

p[θi|ϕ,H] =

∫ 1

0

..

∫ 1

0

p[θ|ϕ,H] dθ1..dθi−1dθi+1..dθm

=
∑

w:w|=ϕ

P[w|ϕ,H] · Be(ai + w[i], bi + w[i])·

·
∫ 1

0

..

∫ 1

0

∏
j∈{1,..,m}\{i}

Be(aj + w[j], bj + w[j]) dθ1..dθi−1dθi+1..dθm

=
∑

w:w|=ϕ

P[w|ϕ,H] · Be(ai + w[i], bi + w[i]) · 1

= P[xi|ϕ,H] · Be(ai + 1, bi) + P[xi|ϕ,H] · Be(ai, bi + 1)

This concludes our proof.
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