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CSE 250
Lecture 1

How to Scala
Textbook Ch. 1.1-1.6, 1.8-1.9




Announcements

e Al Quiz on Autolab available now.
o Due Weds Sept 7 @ 11:59 PM
o Submit as many times as you want
o To pass the class, your final submission must indicate that you have
satisfied the requirement (1.0 out of 1.0 score)
o If you don’t have access to CSE-250 on Autolab, let course staff
Know.

e PA 0 will be assigned in the next 24 hr

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY



Why Scala?

e Strongly Typed Language
o The compiler helps you make sure you mean what you say.

e JVM-based, Compiled Language
o Run anywhere, but also see the impacts of data layout.

e Interactive REPL Interpreter
o It's easy to test things out quickly (more on this later).

e Well Thought-Out Container Library
o Clearly separates data structure role and implementation.
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Environment

e Intellid
o Ubuntu Linux

o MacOS
o Windows

e Emacs + SBT
o Ubuntu Linux
o MacOS
o Windows / WSL

Projects come with an IntelliJ workspace and a SBT build.sbt file
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Hello World

Everything is always enclosed in a class Type

\

object HelloWorld {

Function R , _«—— ‘“ishow you
definition ?ef main (args: b8 define the

println ("Hello, World!") function

}

Brackets in types read as “of” (e.g., “Array of String”)
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Coding Style is Important

def _doThings () = {

ion?
Indentation val IlikeLlamas = 10
PeachesAreGreat = for (1 <- 1 to 5)_ yield 1
Names?

Useful comments? {31‘ QQ = PeachesAr

.map ( +ILikeLlamas)

his 1s a for loop.

for (g <= println (q)

// This is a loop with a 4.
Braces? for (<=0 wrtit—4)r—println (i)

5
Return value? /

Scala features?
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Coding Style is Important

e Indent bracketed code uniformly.

e Give variables semantically meaningful names.

e Use comments to convey the “why” of your code, not the what.

e Scala has MANY ways to express identical concepts. Pick one and be consistent.
e Braces aren’t required, but can help to avoid bugs.

e Clearly indicate return values

e Imagine you’re writing a letter to future-you...
o ...help future-you (and the TAs/me) understand.
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Ways to succeed

e Never start with code.

e \What do you have? How is it structured?
o Draw diagrams
o Use examples

e What do you want? How should it be structured?
o Same as above

e How do the components map from one to the other
o Connect the diagrams
o Pseudocode: Break the big problem down into smaller ones
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I Ways to Obtain Assistance

e Explain what you've tried
o Test cases that fail
o Approaches that don’t work

e Explain what you are trying to accomplish and why
o Make sure your interlocutor has all the context

e Follow code style guidelines
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If you still don’t feel comfortable with Scala

e Guarantee: If you bring us (mostly working) pseudocode, the TAs and |
will help you translate it to Scala.

e Translation Challenges:
o Syntax (e.g., “l don’t know how to break out of a for loop”)
m Ask on Piazza, Office Hours, Recitation; We will help you!
o Semantics (e.g., “l don’t know how to insert into a linked list”)
m Ask, but we'll ask you to be more precise

e Most questions | get about syntax are usually asking about semantics.
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Scala
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Primitive Types

Type Doscripion |Examples

Binary value true, false
16-bit unsigned integer ‘', Vy!
8-bit signed integer 42 .toByte
16-bit signed integer 42 .toShort
32-bit signed integer 42

64-bit signed integer 421

Single-precision floating-point number 42 .0f
Double-precision floating-point number 42.0
No value ()
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Primitive Types are “sort of” Objects

Literally Anything

(Cany ) Any Java-style
Any Primitive Value Object

— @<®§@?> Syee ﬁ.@)@

(image: Scala-Lang Tour, Scala Type Hierarchy https://docs.scala-lang.org/tour/unified-types.html )
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https://docs.scala-lang.org/tour/unified-types.html

Every Expression Has A Type

Optionally annotate anything with “: type”

- Variables (declares the variable’s type)

- Functions (declares the return type)

- Parenthesized arithmetic (sanity checks the return type)
- If you don’t annotate, Scala will try to infer it.

val x: Float = (5 / 2.0).toFloat‘\\\\\\\\\\\
Why?

val income = 15 + 10.2 * 9.3f

def lotsOfFun(x: Int) = “fun” * X
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Inconsistent Types

val res = 1if (x > 0) { “positive” * x }
else { -1 }

What type does res have?
A: String

B: Int

C: Any

D: AnyRef
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Inconsistent Types

val res = 1if (x > 0) { “positive” * x }
else { -1l.toString }
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Every Block has a Return Value/Type

Don’t forget to include the ‘=’ in a function definition

def doThings () = {
val IlikeLlamas = 10 What value is
val PeachesAreGreat = for (i <- 1 to 5) yield i returned?
val QQ = PeachesAreGreat.map( +ILikeLlamas) A: 10
// This is a for loop. B: llikeLlamas
for (g <- QQ) println(q)
// This is a loop with a 4. C:5

= (1 <= 0 until 4) println (1)

D: 4

}

The last line of every block is its value
Fall 2022
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Blocks for Assignments

Separate multiple instructions on one line with semicolons

/ |

val blockAssign = { val x = 10; val y = 20; (x, y) }

val butterBlock = {
val pastry = “croissant”
val flavor = “PB&J”
flavor + “ “ + pastry
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Mutable vs Immutable

. Mutable

- Something that can be changed
. Immutable

- Something that cannot be changed

val wvalue that cannot be reassigned (immutable)

var variable that can be reassigned (mutable)

Mutable state can be updated, but is harder to reason about.
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Val vs Var

scala> val s = mutable.Set (1, 2, 3)

scala> s += 4
resO: s.type = HashSet (1, 2, 3, 4)

Why are we allowed to modify s?
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Scala Class Types

® class
o Normal OOP type (instantiate with ‘new’)

® object
o A'singleton’ class; Only one instance

® trait
o A'mixin’ class; Can not be instantiated directly

® case class
o Like class, but provides bonus features

A class can inherit from one superclass and multiple traits
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Companion Objects

. An object with the same name as a class (same file)

- Global (‘static’) methods pertaining to the class
- e.g.,toavoid ‘new’:

class Register(val x : Int) {

def addValue(y: Int) = x + vy
}
object Register {

def apply(x: Int) = new Register (x)
}
scala> val regb = new Register (5)
regb: Register = Register@146£f3d22
scala> val regl0 = Register (10)
regl0: Register = Register@43bl72e3

Scala shorthand: foo (x) is the same as foo.apply (x)
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