a2

CSE 250
Lecture 1

How to Scala
Textbook Ch. 1.1-1.6, 1.8-1.9

Announcements

e Al Quiz on Autolab available now.
o Due Weds Sept 7 @ 11:59 PM
o Submit as many times as you want
o To pass the class, your final submission must indicate that you have
satisfied the requirement (1.0 out of 1.0 score)
o If you don’t have access to CSE-250 on Autolab, let course staff
Know.

e PA 0 will be assigned in the next 24 hr

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Why Scala?

e Strongly Typed Language
o The compiler helps you make sure you mean what you say.

e JVM-based, Compiled Language
o Run anywhere, but also see the impacts of data layout.

e Interactive REPL Interpreter
o It's easy to test things out quickly (more on this later).

e Well Thought-Out Container Library
o Clearly separates data structure role and implementation.

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Environment

e Intellid
o Ubuntu Linux

o MacOS
o Windows

e Emacs + SBT
o Ubuntu Linux
o MacOS
o Windows / WSL

Projects come with an IntelliJ workspace and a SBT build.sbt file

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Hello World

Everything is always enclosed in a class Type

\

object HelloWorld {

Function R , _«—— ‘“ishow you
definition ?ef main (args: b8 define the

println ("Hello, World!") function

}

Brackets in types read as “of” (e.g., “Array of String”)

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Coding Style is Important

def _doThings () = {

ion?
Indentation val IlikeLlamas = 10
PeachesAreGreat = for (1 <- 1 to 5)_ yield 1
Names?

Useful comments? {31‘ QQ = PeachesAr

.map (+ILikeLlamas)

his 1s a for loop.

for (g <= println (q)

// This is a loop with a 4.
Braces? for (<=0 wrtit—4)r—println (i)

5
Return value? /

Scala features?

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Coding Style is Important

e Indent bracketed code uniformly.

e Give variables semantically meaningful names.

e Use comments to convey the “why” of your code, not the what.

e Scala has MANY ways to express identical concepts. Pick one and be consistent.
e Braces aren’t required, but can help to avoid bugs.

e Clearly indicate return values

e Imagine you’re writing a letter to future-you...
o ...help future-you (and the TAs/me) understand.

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Ways to succeed

e Never start with code.

e \What do you have? How is it structured?
o Draw diagrams
o Use examples

e What do you want? How should it be structured?
o Same as above

e How do the components map from one to the other
o Connect the diagrams
o Pseudocode: Break the big problem down into smaller ones

Fa” 2022 ©O0liver Kennedy, Eric Mikida. The University at Buffalo, SUNY

I Ways to Obtain Assistance

e Explain what you've tried
o Test cases that fail
o Approaches that don’t work

e Explain what you are trying to accomplish and why
o Make sure your interlocutor has all the context

e Follow code style guidelines

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

If you still don’t feel comfortable with Scala

e Guarantee: If you bring us (mostly working) pseudocode, the TAs and |
will help you translate it to Scala.

e Translation Challenges:
o Syntax (e.g., “l don’t know how to break out of a for loop”)
m Ask on Piazza, Office Hours, Recitation; We will help you!
o Semantics (e.g., “l don’t know how to insert into a linked list”)
m Ask, but we'll ask you to be more precise

e Most questions | get about syntax are usually asking about semantics.

Fa” 2022 ©O0liver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Scala

©O0liver Kennedy, Andrew Hughes
Fall 2021 The University at Buffalo, SUNY 11/

Primitive Types

Type Doscripion |Examples

Binary value true, false
16-bit unsigned integer ‘', Vy!
8-bit signed integer 42 .toByte
16-bit signed integer 42 .toShort
32-bit signed integer 42

64-bit signed integer 421

Single-precision floating-point number 42 .0f
Double-precision floating-point number 42.0
No value ()

Fa” 2022 ©0liver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Primitive Types are “sort of” Objects

Literally Anything

(Cany) Any Java-style
Any Primitive Value Object

— @<®§@?> Syee ﬁ.@)@

(image: Scala-Lang Tour, Scala Type Hierarchy https://docs.scala-lang.org/tour/unified-types.html)

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

https://docs.scala-lang.org/tour/unified-types.html

Every Expression Has A Type

Optionally annotate anything with “: type”

- Variables (declares the variable’s type)

- Functions (declares the return type)

- Parenthesized arithmetic (sanity checks the return type)
- If you don’t annotate, Scala will try to infer it.

val x: Float = (5 / 2.0).toFloat‘\\\\\\\\\\\
Why?

val income = 15 + 10.2 * 9.3f

def lotsOfFun(x: Int) = “fun” * X

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Inconsistent Types

val res = 1if (x > 0) { “positive” * x }
else { -1 }

What type does res have?
A: String

B: Int

C: Any

D: AnyRef

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Inconsistent Types

val res = 1if (x > 0) { “positive” * x }
else { -1l.toString }

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Every Block has a Return Value/Type

Don’t forget to include the ‘=’ in a function definition

def doThings () = {
val IlikeLlamas = 10 What value is
val PeachesAreGreat = for (i <- 1 to 5) yield i returned?
val QQ = PeachesAreGreat.map(+ILikeLlamas) A: 10
// This is a for loop. B: llikeLlamas
for (g <- QQ) println(q)
// This is a loop with a 4. C:5

= (1 <= 0 until 4) println (1)

D: 4

}

The last line of every block is its value
Fall 2022

©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Blocks for Assignments

Separate multiple instructions on one line with semicolons

/ |

val blockAssign = { val x = 10; val y = 20; (x, y) }

val butterBlock = {
val pastry = “croissant”
val flavor = “PB&J”
flavor + “ “ + pastry

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Mutable vs Immutable

. Mutable

- Something that can be changed
. Immutable

- Something that cannot be changed

val wvalue that cannot be reassigned (immutable)

var variable that can be reassigned (mutable)

Mutable state can be updated, but is harder to reason about.

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Val vs Var

scala> val s = mutable.Set (1, 2, 3)

scala> s += 4
resO: s.type = HashSet (1, 2, 3, 4)

Why are we allowed to modify s?

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Scala Class Types

® class
o Normal OOP type (instantiate with ‘new’)

® object
o A'singleton’ class; Only one instance

® trait
o A'mixin’ class; Can not be instantiated directly

® case class
o Like class, but provides bonus features

A class can inherit from one superclass and multiple traits

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

Companion Objects

. An object with the same name as a class (same file)

- Global (‘static’) methods pertaining to the class
- e.g.,toavoid ‘new’:

class Register(val x : Int) {

def addValue(y: Int) = x + vy
}
object Register {

def apply(x: Int) = new Register (x)
}
scala> val regb = new Register (5)
regb: Register = Register@146£f3d22
scala> val regl0 = Register (10)
regl0: Register = Register@43bl72e3

Scala shorthand: foo (x) is the same as foo.apply (x)

Fa” 2022 ©0Qliver Kennedy, Eric Mikida. The University at Buffalo, SUNY

