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CSE 250
Lecture 25 
AVL Trees

A CAT Tree



Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 2 / 25

BST Operation Costs
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Tree Depth vs Size
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“Balanced” Trees
● Faster search: Want height(left) ≈ height(right)

– Make it more precise: |height(left) - height(right)| ≤ 1
– (left, right height differ by at most 1)

● Question: How do we keep the tree balanced?
– Option 1: Keep left/right subtrees within +/- 1 of each other

● Add a field to track the “imbalance factor”
– Option 2: Ensure leaves are at a minimum depth of d / 2

● Add a designation marking each node as red or black
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AVL Trees
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AVL Trees
● An AVL tree (Adelson-Velsky and Landis) is a BST where every 

subtree is “depth-balanced” 
– (remember tree depth = root height)
– |height(left child) - height(right child)| ≤ 1

● define balance(v) = height(v.right) - height(v.left)
– Maintain balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → “v is balanced”
● balance(v) = -1 → “v is left-heavy”
● balance(v) = 1 → “v is right-heavy”
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AVL Trees
● Goal: AVL tree property maintains a nearly balanced tree

– Depth balance forces a maximum possible depth d ≪ n
● (d ≪ n means d ≤ c log(n) for some constant c > 0)

● Proof idea: An AVL tree with depth d has “enough” nodes
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AVL Trees
● Let minNodes(d) be the minimum number of nodes in an AVL 

tree of depth d
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AVL Trees

1

h = 
n-2 h = 

n-1

For any tree of depth n: at least one subtree
needs to have 
a depth of n - 1

subtrees must be balanced, so
the other subtree needs to have
a depth of at least n-2
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Enough Nodes?
● For d > 1

– minNodes(d) = 1 + minNodes(d-1) + minNodes(d-2)
– This is the Fibbonacci Sequence!

● minNodes(d) = Fib(d+3)-1
● Fib(0), Fib(1), Fib(2), ... = 0, 1, 1, 2, 3, 5, 8, ...

– minNodes(d) = Ω(1.5d)
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Enough Nodes?
● minNodes(d) = Ω(1.5d)

constant

A tree with n nodes and the AVL 
constraint has logarithmic depth in n
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Enforcing the AVL Constraint
● Computing balance() on the fly is expensive

– balance calls height() twice
– Computing height requires visiting every node

● (linear in the size of the subtree)
● Idea: Store height of each node at the node

– Better idea: Store balance factor (only requires 2 bits)
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Enforcing the AVL Constraint

class AVLNode[K, V](
  var _key: K,
  var _value: V,
  var _parent: Option[AVLNode[K,V]],
  var _left: AVLNode[K,V],
  var _right: AVLNode[K,V],
  var _isLeftHeavy: Boolean,  // true if balance(this) == -1
  var _isRightHeavy: Boolean, // true if balance(this) == 1
)

maintaining _parent makes it possible to traverse up the tree
(helpful for rotations), but is not possible in an immutable tree.
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Enforcing the AVL Constraint
● Left Rotation

– Before
● (A) root;           balance(A) = +2  (too right heavy)
● (B) root.right;  balance(B) = +1  (right heavy)

1)  Left subtree of (B) becomes right subtree of (A). 
2)  (A) becomes left subtree of (B)
3)  (B) becomes root
– After

● balance(A) = 0, balance(B) = 0
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Enforcing the AVL Constraint
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height = hheight = h-1height = h-1
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Enforcing the AVL Constraint

A

B

X Y Z

height = hheight = h-1height = h-1

balance = 0

balance = 0
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Enforcing the AVL Constraint
● Right-Left Rotation

– Before
● (A) root;           balance(A) = +2  (too right heavy)
● (B) root.right;  balance(B) = -1  (left heavy)
● (C) right.left.right

1)  Left subtree of (C) becomes right subtree of (A). 
2)  Right subtree of (C) becomes left subtree of (B). 
3)  (A) becomes left subtree of (C)
4)  (B) becomes right subtree of (C)
5)  (C) becomes root
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Enforcing the AVL Constraint
● After

– if (C)’s BF was originally 0
● (A) BF = 0;  (B) BF = 0;  (C) BF = 0

– if (C)’s BF was originally -1
● (A) BF = 0;  (B) BF = +1;  (C) BF = 0

– if (C)’s BF was originally +1
● (A) BF = -1;  (B) BF = 0;  (C) BF = 0
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Enforcing the AVL Constraint

A

B

W X Z

C

Y

height = h height = hx height = hy height = h

balance = 0, +1 or -1

balance = -1

balance = +2

hx = hy = h
or 
hx = h - 1; hy = h
or
hx = h; hy = h -1
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Enforcing the AVL Constraint

A B

W X Z

C

Y

height = h height = hx height = hy height = h

hx = hy = h
or 
hx = h - 1; hy = h
or
hx = h; hy = h - 1

balance = 0 or +1balance = 0 or -1

balance = 0
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Enforcing the AVL Constraint
● Rotate Right

– Symmetric to rotate left
● Rotate Left-Right

– Symmetric to rotate right-left
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Inserting Records
● Inserting Records

– Find insertion as in BST
– Set balance factor of new leaf to 0

● _isLeftHeavy = _isRightHeavy = false
– Trace path up to root, updating balance factor

● Rotate if balance factor off
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Inserting Records
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
  var node = findInsertionPoint(key, root)
  node._key = key;   node._value = value
  node._isLeftHeavy = node._isRightHeavy = false
  while(node._parent.isDefined){
    if(node._parent._left == node){
      if(node._parent._isRightHeavy){
        node._parent._isRightHeavy = false; return
      } else if(node._parent._isLeftHeavy) {
        if(node._isLeftHeavy){ node._parent.rotateRight() }
        else { node._parent.rotateLeftRight() }
        return
      } else { 
        node._parent.isLeftHeavy = true
      }
    } else {
      /* symmetric to above */
    }
    node = node._parent
} }

O(d) = O(log(n))

O(d) = O(log(n)) loops

O(1) per loop

Total Runtime = O(log(n))
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Removing Records
● Removing Records

– Remove the node
● Find the node containing the value as in BST

– If it doesn’t exist, return false
● If the node is a leaf, remove it
● If the node has one child, the child replaces the node
● If the node has two children

– copy smaller child value into node
– remove smaller child node

– Fix balance factors
● Inverse of insertion
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Maintaining Balance
● Claim: Only the balance factors of ancestors are impacted

– The height of a node is only affected by its descendents
● Claim: Only one rotation will fix any remove/insert imbalance

– Insert/remove change the height by at most one
● Only log(n) rotations are required for any insert/remove

– Insert/remove are still log(n)
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