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CSE 250
Lecture 26-27
AVL Trees & RB Trees

A CAT Tree
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BST Operation Costs

Operation Runtime

find

insert

remove

O(d)

O(d)

O(d)
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Enforcing the AVL Constraint

class AVLNode[K, V](
  var _key: K,
  var _value: V,
  var _parent: Option[AVLNode[K,V]],
  var _left: AVLNode[K,V],
  var _right: AVLNode[K,V],
  var _isLeftHeavy: Boolean,  // true if balance(this) == -1
  var _isRightHeavy: Boolean, // true if balance(this) == 1
)

maintaining _parent makes it possible to traverse up the tree
(helpful for rotations), but is not possible in an immutable tree.
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Fixing Unbalanced Trees
● Assumptions: 

– There is one subtree with exactly one unbalanced node
– It has a balance factor of ±2
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h+1
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Fixing Unbalanced Trees

Y

height = h+1

B

Y Z

height = hy height = hz

balance = -1, 0, or +1

bal = -1 0 +1
hy = h h h-1
hz = h-1 h h
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-1

Z

B

height = h

Case 1:

balance = +1
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Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h

Case 1:

balance = 0
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h

Z

B

height = h

Case 2:

balance = 0
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Fixing Unbalanced Trees

A

X Y

balance = -1

height = h-1 height = h

Z

B

height = h

Case 2:

balance = +1
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h

Z

B

height = h-1

Case 3:

balance = -1
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Fixing Unbalanced Trees

A

X Y

balance = -2

height = h-1

Z

BCase 3:

balance = +1

height = h height = h-1



Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 13 / 46

Fixing Unbalanced Trees

Y

height = h

C

Y W

height = hy height = hw

balance = -1, 0, or +1

bal = -1 0 +1
hy = h-1 h-1 h-2
hw = h-2 h-1 h-1
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = -1

C

W

balance = +1

height = h-1
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Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = +2C

W

balance = 0

height = h-1
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Fixing Unbalanced Trees

A

X Y

balance = -1

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = 0C

W

balance = 0

height = h-1
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Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h-1

Case 3.2:

balance = 0C

W

balance = 0

height = h-1
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Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h-1

Case 3.3:

balance = 0C

W

balance = +1

height = h-2
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Enforcing the AVL Constraint
● Left Rotation

– Before
● (A) root;           balance(A) = +2  (too right heavy)
● (B) root.right;  balance(B) = +1  (right heavy)

1)  Left subtree of (B) becomes right subtree of (A). 
2)  (A) becomes left subtree of (B)
3)  (B) becomes root
– After

● balance(A) = 0, balance(B) = 0
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Enforcing the AVL Constraint
● Right-Left Rotation

– Before
● (A) root;           balance(A) = +2  (too right heavy)
● (B) root.right;  balance(B) = -1  (left heavy)
● (C) right.left.right

1)  Left subtree of (C) becomes right subtree of (A). 
2)  Right subtree of (C) becomes left subtree of (B). 
3)  (A) becomes left subtree of (C)
4)  (B) becomes right subtree of (C)
5)  (C) becomes root
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Enforcing the AVL Constraint
● After

– if (C)’s BF was originally 0
● (A) BF = 0;  (B) BF = 0;  (C) BF = 0

– if (C)’s BF was originally -1
● (A) BF = 0;  (B) BF = +1;  (C) BF = 0

– if (C)’s BF was originally +1
● (A) BF = -1;  (B) BF = 0;  (C) BF = 0
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Enforcing the AVL Constraint
● Rotate Right

– Symmetric to rotate left
● Rotate Left-Right

– Symmetric to rotate right-left



Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 23 / 46

Inserting Records
● Inserting Records

– Find insertion as in BST
– Set balance factor of new leaf to 0

● _isLeftHeavy = _isRightHeavy = false
– Trace path up to root, updating balance factor

● Rotate if balance factor off
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Inserting Records
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
  var node = findInsertionPoint(key, root)
  node._key = key;   node._value = value
  node._isLeftHeavy = node._isRightHeavy = false
  while(node._parent.isDefined){
    if(node._parent._left == node){
      if(node._parent._isRightHeavy){
        node._parent._isRightHeavy = false; return
      } else if(node._parent._isLeftHeavy) {
        if(node._isLeftHeavy){ /* Pick rotation */ }
        else { node._parent.rotateLeftRight() }
        return
      } else { 
        node._parent.isLeftHeavy = true
      }
    } else {
      /* symmetric to above */
    }
    node = node._parent
} }

O(d) = O(log(n))

O(d) = O(log(n)) loops

O(1) per loop

Total Runtime = O(log(n))
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Removing Records
● Removing Records

– Remove the node
● Find the node containing the value as in BST

– If it doesn’t exist, return false
● If the node is a leaf, remove it
● If the node has one child, the child replaces the node
● If the node has two children

– copy smaller child value into node
– remove smaller child node

– Fix balance factors
● Inverse of insertion
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Maintaining Balance
● Claim: Only the balance factors of ancestors are impacted

– The height of a node is only affected by its descendents
● Claim: Only one rotation will fix any remove/insert imbalance

– Insert/remove change the height by at most one
● Only log(n) rotations are required for any insert/remove

– Insert/remove are still log(n)
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Maintaining Balance
● Enforcing height-balance is too strict

– May require “unnecessary” rotations
● Weaker restriction:

– Balance the depth of EmptyTree nodes
– If a, b are EmptyTree nodes: 

● depth(a) ≥ (depth(b) ÷ 2)
or

● depth(b) ≥ (depth(a) ÷ 2)
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Balancing Empty Node Depth

A

B

D

H

J

C

E F G

5 5

4 4

33 33 33

OK!

I

4
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Balancing Empty Node Depth

A

B C

E F

5 5

33 33

Not OK!

2
D

H

J
4 4

I

4
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d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

 

Balancing Empty Node Depth

A

B

d d

d-1

d/2

d/2

 

Must be full
(2 d/2⌈ ⌉ nodes)

d/2 = log(n)
d = 2log(n) = O(log(n))
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Red-Black Trees
● Color each node red or black

1) # of black nodes from each empty to root must be identical
2) Parent of a red node must be black

● On Insertion (or deletion)
– Inserted node is red (won’t change # of black nodes)
– “Repair” violations of rule 2 by rotating or recoloring

● Repairs guarantee rule 1 is preserved
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3 black nodes3 black nodes

Red-Black Trees

A

B

D

H

J

C

E F G

3 3

3

33 33 33

OK!

I

33
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Red-Black Trees

A

Repair A

All Valid R-B Tree Fragments
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Red-Black Trees

B

A

Case 1: All Good!
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Red-Black Trees

A

Case 1b: All Good!
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Red-Black Trees

A

Case 1b: All Good!
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Red-Black Trees

B

A

Problem!
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Red-Black Trees

B

A

Case 2:

C

D

Split Black Node
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Red-Black Trees

B

A

Case 2:

C

D
# of black nodes on each 
path didn’t change

C’s parent may be red
(repeat the repair process)

Split Black Node
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Red-Black Trees

B

A

C

D

Also works if A is right-child 
of B (or B is right-child of C)

Case 2: Split Black Node
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Red-Black Trees

B

A

Case 3:

C

D

Rotate B, C
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Red-Black Trees

B

A

Case 3:

C
D

Rotate B, C

-1 black node
to the root

Same # of 
black nodes
to the root
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Red-Black Trees

B

A

Case 3:

C
D

Rotate B, C

-1 black node
to the root

Same # of 
black nodes
to the root

Root of subtree under 
consideration is black
(repair is all done)
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Red-Black Trees

B

A

Case 4:

C

D

Rotate A, B → B, C
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Red-Black Trees

B

A

Case 4:

C

D

Rotate A, B → B, C

Now identical 
to case 3
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Red-Black Trees
● Each insertion creates at most one red-red parent-child conflict

– O(1) time to recolor/rotate to repair color
– May create a red-red conflict in grandparent

● Up to d/2 = O(log(n)) repairs required
● Each deletion removes at most one black node

– O(1) time to recolor/rotate to preserve black-depth 
– May require recoloring (grand-)parent from black to red

● Up to d = O(log(n)) repairs required
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