
Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 1 / 46

CSE 250
Lecture 26-27
AVL Trees & RB Trees

A CAT Tree

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 2 / 46

BST Operation Costs

Operation Runtime

find

insert

remove

O(d)

O(d)

O(d)

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 3 / 46

Enforcing the AVL Constraint

class AVLNode[K, V](
 var _key: K,
 var _value: V,
 var _parent: Option[AVLNode[K,V]],
 var _left: AVLNode[K,V],
 var _right: AVLNode[K,V],
 var _isLeftHeavy: Boolean, // true if balance(this) == -1
 var _isRightHeavy: Boolean, // true if balance(this) == 1
)

maintaining _parent makes it possible to traverse up the tree
(helpful for rotations), but is not possible in an immutable tree.

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 4 / 46

Fixing Unbalanced Trees
● Assumptions:

– There is one subtree with exactly one unbalanced node
– It has a balance factor of ±2

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 5 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h+1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 6 / 46

Fixing Unbalanced Trees

Y

height = h+1

B

Y Z

height = hy height = hz

balance = -1, 0, or +1

bal = -1 0 +1
hy = h h h-1
hz = h-1 h h

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 7 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-1

Z

B

height = h

Case 1:

balance = +1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 8 / 46

Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h

Case 1:

balance = 0

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 9 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h

Z

B

height = h

Case 2:

balance = 0

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 10 / 46

Fixing Unbalanced Trees

A

X Y

balance = -1

height = h-1 height = h

Z

B

height = h

Case 2:

balance = +1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 11 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h

Z

B

height = h-1

Case 3:

balance = -1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 12 / 46

Fixing Unbalanced Trees

A

X Y

balance = -2

height = h-1

Z

BCase 3:

balance = +1

height = h height = h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 13 / 46

Fixing Unbalanced Trees

Y

height = h

C

Y W

height = hy height = hw

balance = -1, 0, or +1

bal = -1 0 +1
hy = h-1 h-1 h-2
hw = h-2 h-1 h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 14 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = -1

C

W

balance = +1

height = h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 15 / 46

Fixing Unbalanced Trees

A

X Y

balance = +2

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = +2C

W

balance = 0

height = h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 16 / 46

Fixing Unbalanced Trees

A

X Y

balance = -1

height = h-1 height = h-2

Z

B

height = h-1

Case 3.1:

balance = 0C

W

balance = 0

height = h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 17 / 46

Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h-1

Case 3.2:

balance = 0C

W

balance = 0

height = h-1

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 18 / 46

Fixing Unbalanced Trees

A

X Y

balance = 0

height = h-1 height = h-1

Z

B

height = h-1

Case 3.3:

balance = 0C

W

balance = +1

height = h-2

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 19 / 46

Enforcing the AVL Constraint
● Left Rotation

– Before
● (A) root; balance(A) = +2 (too right heavy)
● (B) root.right; balance(B) = +1 (right heavy)

1) Left subtree of (B) becomes right subtree of (A).
2) (A) becomes left subtree of (B)
3) (B) becomes root
– After

● balance(A) = 0, balance(B) = 0

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 20 / 46

Enforcing the AVL Constraint
● Right-Left Rotation

– Before
● (A) root; balance(A) = +2 (too right heavy)
● (B) root.right; balance(B) = -1 (left heavy)
● (C) right.left.right

1) Left subtree of (C) becomes right subtree of (A).
2) Right subtree of (C) becomes left subtree of (B).
3) (A) becomes left subtree of (C)
4) (B) becomes right subtree of (C)
5) (C) becomes root

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 21 / 46

Enforcing the AVL Constraint
● After

– if (C)’s BF was originally 0
● (A) BF = 0; (B) BF = 0; (C) BF = 0

– if (C)’s BF was originally -1
● (A) BF = 0; (B) BF = +1; (C) BF = 0

– if (C)’s BF was originally +1
● (A) BF = -1; (B) BF = 0; (C) BF = 0

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 22 / 46

Enforcing the AVL Constraint
● Rotate Right

– Symmetric to rotate left
● Rotate Left-Right

– Symmetric to rotate right-left

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 23 / 46

Inserting Records
● Inserting Records

– Find insertion as in BST
– Set balance factor of new leaf to 0

● _isLeftHeavy = _isRightHeavy = false
– Trace path up to root, updating balance factor

● Rotate if balance factor off

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 24 / 46

Inserting Records
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ /* Pick rotation */ }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else {
 /* symmetric to above */
 }
 node = node._parent
} }

O(d) = O(log(n))

O(d) = O(log(n)) loops

O(1) per loop

Total Runtime = O(log(n))

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 25 / 46

Removing Records
● Removing Records

– Remove the node
● Find the node containing the value as in BST

– If it doesn’t exist, return false
● If the node is a leaf, remove it
● If the node has one child, the child replaces the node
● If the node has two children

– copy smaller child value into node
– remove smaller child node

– Fix balance factors
● Inverse of insertion

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 26 / 46

Maintaining Balance
● Claim: Only the balance factors of ancestors are impacted

– The height of a node is only affected by its descendents
● Claim: Only one rotation will fix any remove/insert imbalance

– Insert/remove change the height by at most one
● Only log(n) rotations are required for any insert/remove

– Insert/remove are still log(n)

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 27 / 46

Maintaining Balance
● Enforcing height-balance is too strict

– May require “unnecessary” rotations
● Weaker restriction:

– Balance the depth of EmptyTree nodes
– If a, b are EmptyTree nodes:

● depth(a) ≥ (depth(b) ÷ 2)
or

● depth(b) ≥ (depth(a) ÷ 2)

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 28 / 46

Balancing Empty Node Depth

A

B

D

H

J

C

E F G

5 5

4 4

33 33 33

OK!

I

4

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 29 / 46

Balancing Empty Node Depth

A

B C

E F

5 5

33 33

Not OK!

2
D

H

J
4 4

I

4

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 30 / 46

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

Balancing Empty Node Depth

A

B

d d

d-1

d/2

d/2

Must be full
(2 d/2⌈ ⌉ nodes)

d/2 = log(n)
d = 2log(n) = O(log(n))

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 31 / 46

Red-Black Trees
● Color each node red or black

1) # of black nodes from each empty to root must be identical
2) Parent of a red node must be black

● On Insertion (or deletion)
– Inserted node is red (won’t change # of black nodes)
– “Repair” violations of rule 2 by rotating or recoloring

● Repairs guarantee rule 1 is preserved

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 32 / 46

3 black nodes3 black nodes

Red-Black Trees

A

B

D

H

J

C

E F G

3 3

3

33 33 33

OK!

I

33

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 33 / 46

Red-Black Trees

A

Repair A

All Valid R-B Tree Fragments

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 34 / 46

Red-Black Trees

B

A

Case 1: All Good!

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 35 / 46

Red-Black Trees

A

Case 1b: All Good!

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 36 / 46

Red-Black Trees

A

Case 1b: All Good!

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 37 / 46

Red-Black Trees

B

A

Problem!

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 38 / 46

Red-Black Trees

B

A

Case 2:

C

D

Split Black Node

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 39 / 46

Red-Black Trees

B

A

Case 2:

C

D
of black nodes on each
path didn’t change

C’s parent may be red
(repeat the repair process)

Split Black Node

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 40 / 46

Red-Black Trees

B

A

C

D

Also works if A is right-child
of B (or B is right-child of C)

Case 2: Split Black Node

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 41 / 46

Red-Black Trees

B

A

Case 3:

C

D

Rotate B, C

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 42 / 46

Red-Black Trees

B

A

Case 3:

C
D

Rotate B, C

-1 black node
to the root

Same # of
black nodes
to the root

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 43 / 46

Red-Black Trees

B

A

Case 3:

C
D

Rotate B, C

-1 black node
to the root

Same # of
black nodes
to the root

Root of subtree under
consideration is black
(repair is all done)

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 44 / 46

Red-Black Trees

B

A

Case 4:

C

D

Rotate A, B → B, C

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 45 / 46

Red-Black Trees

B

A

Case 4:

C

D

Rotate A, B → B, C

Now identical
to case 3

Fall 2021 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 46 / 46

Red-Black Trees
● Each insertion creates at most one red-red parent-child conflict

– O(1) time to recolor/rotate to repair color
– May create a red-red conflict in grandparent

● Up to d/2 = O(log(n)) repairs required
● Each deletion removes at most one black node

– O(1) time to recolor/rotate to preserve black-depth
– May require recoloring (grand-)parent from black to red

● Up to d = O(log(n)) repairs required

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

