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CSE 250
Lecture 30
Hash Tables

Your hash bucket was tasty
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Recap: So Far
● Current Design: Hash Table with Chaining

– Array of Buckets
– Each bucket is the head of a linked list (a “chain”)
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Recap: apply(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record:  O(α·cequality)
– Total: O(chash + α·cequality) ≈ O(1 + 1) = O(1)

● Worst-Case Cost
– Find the record:  O(n·cequality)
– Total: O(chash + n·cequality) ≈ O(1 + n) = O(n)
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Recap: remove(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record:  O(α·cequality)
– Remove from linked-list: O(1)
– Total: O(chash + α·cequality +1) ≈ O(1 + 1 + 1) = O(1)

● Worst-Case Cost
– Find the record:  O(n·cequality)
– Total: O(chash + n·cequality +1) ≈ O(1 + n + 1) = O(n)
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Recap: insert(x)
● Expected Cost

– Find the bucket: O(chash)
– Remove the key, if present:  O(α·cequality + 1)
– Prepend to linked-list: O(1)
– Rehash: O(n·chash + N) ; amortized: O(1)
– Total: O(chash + α·cequality +1) ≈ O(1 + 1 + 2) = O(1)

● Worst-Case Cost (amortized)
– Remove the key, if present:  O(n·cequality + 1)
– Total: O(chash + n·cequality +1+1) ≈ O(1 + n + 2) = O(n)
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Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table
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Chaining

0 1 2 3 54 6 7BA
C

D
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

E
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Open Addressing

0 1 2 3 54 6 7BA C D E

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

!

!

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(A)

1

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(C)

1 2

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(E)

1 2 3

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1 

– Element not found
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Open Addressing
● remove(X)

– While bucket hash(X)+i is occupied
● If the element at bucket hash(X)+i is X, remove it
● Otherwise i = i + 1 %N

What about elements that were cascaded ?
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Removals Under Open Addressing
● Check each element in a contiguous block, starting at hash(X)

– Move elements up
● Don’t move any element Y ahead of hash(Y) 
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Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c 
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)
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Cuckoo Hashing
● Dynamic Hashing can have arbitrarily long cascade chains

– Can we reduce the chance of a cascade chain for some 
operations?
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Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found
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Cuckoo Hashing

0 1 2 3 54 6 7BA

C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 3

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 3

!

!
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Cuckoo Hashing

0 1 2 3 54 6 7BA C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

C

D

E
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Cuckoo Hashing

0 1 2 3 54 6 7

B

A C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

D

E

B

C

A
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Cuckoo Hashing

0 1 2 3 54 6 7B

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

DEC A

apply(x) and remove(x) is guaranteed O(1)
insert(x) is expected O(1) if α is low enough
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Dynamic Hashing
● Rehash is expensive!

– Amortized cost of rehash is still O(1)
– ... but every so often everything grinds to a halt!
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Dynamic Hashing
● Contrast h(x) % 4 with h(x) % 8

– e.g. h(x) = 7069;  h(x) % 8 = 5
● If we rehash from h(x) % N to h(x) % 2N either:

– h(x) % 2N = h(x) % N
or 

– h(x) % 2N = (h(x) % N) + N
● Idea: Only rehash “full” buckets

– An element x can be located at any of the following buckets:
h(x) % N   or    h(x) % 2N   or   h(x) % 4N  or  ... 
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2:

3:

0:

1:

Dynamic Hashing

0:

1:

hash(A) = 1
hash(B) = 6 
hash(C) = 3
hash(D) = 4
hash(E) = 9
hash(F) = 7

B

A EC

D

A E

C

h(x) % 2 h(x) % 4

F

insert(x) is always O(1)
apply(x), remove(x) are O(log(n))
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Dynamic Hashing
● Keep log(n) levels

– Each level i contains hash buckets for h(x) % 2i·N
– Any record will be stored at exactly one level

● When a level fills up, split its records at the next level
● When a level empties out, merge with its counterpart

● Keep an array of 2i·N entries
– Indicate which level h(x)%2i·N is located at
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Linked Hash Table
● Iteration over Hash Table is O(N + n)

– Can be much slower than O(n)
● Idea: Connect entries together in a Doubly Linked List
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Linked Hash Table

A B C D Y ZP ......Athos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅∅∅ ∅

head tail

Porthos
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Linked Hash Table

A B C D Y ZP ......Athos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos
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Linked Hash Table

A B C D Y ZP ......Athos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅

∅



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 31

Linked Hash Table

A B C D Y ZP ......Athos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅
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Linked Hash Table
● O(n) Iteration
● apply(x)

– O(1) increase in cost
● insert(x)

– O(1) increase in cost
● remove(x)

– O(1) increase in cost
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