
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 31

CSE 250
Lecture 30
Hash Tables

Your hash bucket was tasty

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 31

Recap: So Far
● Current Design: Hash Table with Chaining

– Array of Buckets
– Each bucket is the head of a linked list (a “chain”)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 31

Recap: apply(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record: O(α·cequality)
– Total: O(chash + α·cequality) ≈ O(1 + 1) = O(1)

● Worst-Case Cost
– Find the record: O(n·cequality)
– Total: O(chash + n·cequality) ≈ O(1 + n) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 31

Recap: remove(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record: O(α·cequality)
– Remove from linked-list: O(1)
– Total: O(chash + α·cequality +1) ≈ O(1 + 1 + 1) = O(1)

● Worst-Case Cost
– Find the record: O(n·cequality)
– Total: O(chash + n·cequality +1) ≈ O(1 + n + 1) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 31

Recap: insert(x)
● Expected Cost

– Find the bucket: O(chash)
– Remove the key, if present: O(α·cequality + 1)
– Prepend to linked-list: O(1)
– Rehash: O(n·chash + N) ; amortized: O(1)
– Total: O(chash + α·cequality +1) ≈ O(1 + 1 + 2) = O(1)

● Worst-Case Cost (amortized)
– Remove the key, if present: O(n·cequality + 1)
– Total: O(chash + n·cequality +1+1) ≈ O(1 + n + 2) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 31

Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 31

Chaining

0 1 2 3 54 6 7BA
C

D
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 31

Open Addressing

0 1 2 3 54 6 7BA C D E

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

!

!

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 31

Open Addressing

0 1 2 3 54 6 7

apply(A)

1

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 31

Open Addressing

0 1 2 3 54 6 7

apply(C)

1 2

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 31

Open Addressing

0 1 2 3 54 6 7

apply(E)

1 2 3

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 31

Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1

– Element not found

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 31

Open Addressing
● remove(X)

– While bucket hash(X)+i is occupied
● If the element at bucket hash(X)+i is X, remove it
● Otherwise i = i + 1 %N

What about elements that were cascaded ?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 31

Removals Under Open Addressing
● Check each element in a contiguous block, starting at hash(X)

– Move elements up
● Don’t move any element Y ahead of hash(Y)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 31

Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 31

Cuckoo Hashing
● Dynamic Hashing can have arbitrarily long cascade chains

– Can we reduce the chance of a cascade chain for some
operations?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 31

Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 31

Cuckoo Hashing

0 1 2 3 54 6 7BA

C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 3

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 3

!

!

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 31

Cuckoo Hashing

0 1 2 3 54 6 7BA C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

C

D

E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 31

Cuckoo Hashing

0 1 2 3 54 6 7

B

A C

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

D

E

B

C

A

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 31

Cuckoo Hashing

0 1 2 3 54 6 7B

hash2(A) = 3
hash2(B) = 4
hash2(C) = 1
hash2(D) = 6
hash2(E) = 4

hash1(A) = 1
hash1(B) = 2
hash1(C) = 2
hash1(D) = 4
hash1(E) = 1 !

!

DEC A

apply(x) and remove(x) is guaranteed O(1)
insert(x) is expected O(1) if α is low enough

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 31

Dynamic Hashing
● Rehash is expensive!

– Amortized cost of rehash is still O(1)
– ... but every so often everything grinds to a halt!

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 31

Dynamic Hashing
● Contrast h(x) % 4 with h(x) % 8

– e.g. h(x) = 7069; h(x) % 8 = 5
● If we rehash from h(x) % N to h(x) % 2N either:

– h(x) % 2N = h(x) % N
or

– h(x) % 2N = (h(x) % N) + N
● Idea: Only rehash “full” buckets

– An element x can be located at any of the following buckets:
h(x) % N or h(x) % 2N or h(x) % 4N or ...

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 31

2:

3:

0:

1:

Dynamic Hashing

0:

1:

hash(A) = 1
hash(B) = 6
hash(C) = 3
hash(D) = 4
hash(E) = 9
hash(F) = 7

B

A EC

D

A E

C

h(x) % 2 h(x) % 4

F

insert(x) is always O(1)
apply(x), remove(x) are O(log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 31

Dynamic Hashing
● Keep log(n) levels

– Each level i contains hash buckets for h(x) % 2i·N
– Any record will be stored at exactly one level

● When a level fills up, split its records at the next level
● When a level empties out, merge with its counterpart

● Keep an array of 2i·N entries
– Indicate which level h(x)%2i·N is located at

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 26 / 31

Linked Hash Table
● Iteration over Hash Table is O(N + n)

– Can be much slower than O(n)
● Idea: Connect entries together in a Doubly Linked List

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 27 / 31

Linked Hash Table

A B C D Y ZPAthos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅∅∅ ∅

head tail

Porthos

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 31

Linked Hash Table

A B C D Y ZPAthos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 29 / 31

Linked Hash Table

A B C D Y ZPAthos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅

∅

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 31

Linked Hash Table

A B C D Y ZPAthos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 31 / 31

Linked Hash Table
● O(n) Iteration
● apply(x)

– O(1) increase in cost
● insert(x)

– O(1) increase in cost
● remove(x)

– O(1) increase in cost

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

