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CSE 250
Lecture 35
The Memory Hierarchy

the real complexities
are hiding
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Lies!
● Lie 1: Accessing any element of an array of any length is O(1)

– The “RAM” model of computation
● Simplified model... but not perfect

– Real-world Hardware isn’t this simple:
● The Memory Hierarchy
● Non-Uniform Memory Access (NUMA)

● Lie 2: The constants don’t matter
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Algorithm Bounds
● Runtime Bounds

– The algorithm takes O( ... ) time.
● Memory Bounds

– The algorithm needs O( ... ) storage
● IO Bounds

– The algorithm performs O( ... ) accesses to slower memory
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The Memory Hierarchy (simplified)

Cache

Memory (RAM)

Solid State Drives (m2 SSDs)

Hard Disk Drives (HDDs, “Spinning Rust”)

Bigger Faster
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The Memory Hierarchy (simplified)
Cache

Random Access Memory (RAM)

SSDs / HDDs

Disk Page (~4KB)

Cache Line (~64B)
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Reading an Array Entry
● Is the array entry in cache?

– Yes
● Return it (1-4 clock cycles)

– No
● Is the array entry in real memory

– Yes
● Load it into cache (10s of clock cycles)

– No
● Load it out of virtual memory (100s of clock 

cycles)

HUGE constant

So-so constant

Tiny constant
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Reading an Array Entry

It matters whether we’re reading from cache, memory, or disk!

Today: Memory vs Disk
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Ground Rules: Disk vs RAM
● All data starts off in a file on disk

– Need to load data into RAM before accessing it.
– Load data in 4KB chunks (“pages”).
– The amount of available RAM is finite.
– Deallocating a page is one instruction.

● ... unless it was modified and needs to be written back.
● 3 features describe an algorithm:

– Number of instructions (runtime complexity)
– Number of data loads (IO complexity)
– Number of pages of RAM required (memory complexity)

Similar rules apply to any pair of levels of the memory hierarchy.
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Binary Search
● 220 (~1M) Records, 64 bytes each (8 byte key, 56 byte value)

– 64 MB of data, 16,384 4k pages, 64 records/page
● Binary Search: ~log(220) = 20 steps
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Binary Search
● 220 (~1M) Records, 64 bytes each (8 byte key, 56 byte value)

– 64 MB of data, 16,384 4k pages, 64 records/page
● Example: Binary Search (Answer: At position 0)

16,384 pages

step 0
load 8192

step 1
load 4096

step 2
load 2048

...
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Binary Search
● 220 (~1M) Records, 64 bytes each (8 byte key, 56 byte value)

– 64 MB of data, 16,384 4k pages, 64 records/page
● Example: Binary Search (Answer: At position 0)

64 Records (1 page)

step 14
load 0

step 15
(already loaded)

...
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Binary Search
● 220 (~1M) Records, 64 bytes each (8 byte key, 56 byte value)

– 64 MB of data, 16,384 4k pages, 64 records/page
● Example: Binary Search (Answer: At position 0)

– Steps 0-14 each load 1 page (15 pages loaded)
● sloooooow...

– Steps 15-19 access the same page as step 14
● fast!

What’s the memory complexity?

How does it scale with the # of records?
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Complexity
● n records total
● R record size (in Bytes)
● P page size (in Bytes)
● C = ⌊R/P⌋ records per page
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Binary Search Complexity
● Overall binary search runtime:

– log(n) steps
● Behavior goes through two stages

– Stage 1: Each request goes to a new page (e.g., 0-13)
● log(n) - log(C) ( = log(n) - log(R/P)) steps

– Stage 2: One load for all requests (e.g., 14-19)
● log(C) steps
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Binary Search: Complexity
● Memory Complexity

– Stage 1
● Each page is never used again, can discard immediately

– Stage 2
● All use the same page

– We’re interested in the maximum memory use at one time.

The “Working Set” size is 1 page
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Binary Search: Complexity
● 1 page always has 64 records

– The last 6 binary search steps are all on the same page
● With Scaling n...

– 221 records (32GB): 21 binary search steps, 16 loads
– 222 records (64GB): 22 binary search steps, 17 loads
– 223 records (128GB): 23 binary search steps, 18 loads
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Binary Search: Complexity
● IO Complexity:

– Stage 1: 
● Each step does one load: O(log(n) - log(C)) = O(log(n))

– Stage 2: 
● Exactly one load for the entire step: O(1)

– Total IO is the sum of the IOs of the component steps

IO Complexity scales as log2(n)
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How do we improve Binary Search?
● Observation 1:

– 64 MB of 220 x sizeof(key + data)
vs

– 220 x 8B = 8 MB of keys
● Observation 2:

– We don’t need to know which array index the record is at
● ... only the page it’s on
● ... and each page stores a contiguous range of keys
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Fence Pointers
● Idea: Precompute the greatest key in each page in memory

– n records; 64 records/page; n/64 keys
– e.g., n=220 records; Needs 214 keys

● 220 64 byte records = 64 MB
● 214 8 byte records = 219 bytes = 512 KB

– Call this a “Fence Pointer Table”

16,384 pages (Actual Data)

214 = 16,384 keys (Fence Pointer Table)RAM:

Disk:
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Example

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Binary Search: >273, ≤ 412

0 1 2 3Array Index: ...

Load Page 2
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Example (Why “fence pointer”?)

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Fences

Pointers



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 23

Fence Pointers
● Step 1: Binary Search on the Fence Pointer Table

– All in-memory (IO complexity = 0)
● Step 2: Load page

– One load (IO complexity = 1)
● Step 3: Binary search within page

– All in-memory (IO complexity = 0)
● Total IO Complexity: O(1)
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Fence Pointers
● Memory Complexity:

– Need the entire fence pointer table in memory at all times
● O(n / C) pages = O(n)

– Steps 2, 3 load one more page
– Total: O(n+1) = O(n)

O(n) is... not ideal
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