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CSE 250
Lecture 36
ISAM Indexes

Don’t need to read from disk
can read from book instead
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Binary Search: Complexity
● IO Complexity:

– Stage 1: 
● Each step does one load: O(log(n) - log(C)) = O(log(n))

– Stage 2: 
● Exactly one load for the entire step: O(1)

– Total IO is the sum of the IOs of the component steps

IO Complexity scales as log2(n)
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How do we improve Binary Search?
● Trivial Solution:

– Preload the entire array into memory upfront
● Load once, re-use for all subsequent searches
● Problem: Works at 64MB, maybe not at 2TB

● Question: Do we need to preload the entire array?
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How do we improve Binary Search?
● Observation 1:

– 64 MB of 220 x sizeof(key + data)
vs

– 220 x 8B = 8 MB of keys
● Observation 2:

– We don’t need to know which array index the record is at
● ... only the page it’s on
● ... and each page stores a contiguous range of keys
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Fence Pointers
● Idea: In-memory data structure with enough information to 

identify which page a record is on.
– Precompute the (ideally smaller) data structure
– Re-use the in-memory data structure for all searches
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Fence Pointers
● Precompute the greatest key in each page in memory

– n records; 64 records/page; n/64 keys
– e.g., n=220 records; Needs 214 keys

● 220 64 byte records = 64 MB
● 214 8 byte records = 219 bytes = 512 KB

– Call this a “Fence Pointer Table”

16,384 pages (Actual Data)

214 = 16,384 keys (Fence Pointer Table)RAM:

Disk:
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Example

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Binary Search: >273, ≤ 412

0 1 2 3Array Index: ...

Load Page 2
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Example (Why “fence pointer”?)

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Fences

Pointers
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Fence Pointers
● Step 1: Binary Search on the Fence Pointer Table

– All in-memory (IO complexity = 0)
● Step 2: Load page

– One load (IO complexity = 1)
● Step 3: Binary search within page

– All in-memory (IO complexity = 0)
● Total IO Complexity: O(1)
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Fence Pointers
● Memory Complexity:

– Need the entire fence pointer table in memory at all times
● O(n / C) pages = O(n)

– Steps 2, 3 load one more page
– Total: O(n+1) = O(n)

O(n) is... not ideal
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Improving on Fence Pointers
● Store the Fence Pointers on Disk

– 512 x 8 byte keys per 4KB page
● Idea: Binary Search the Fence Pointers on Disk First
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Example

keys 0 - 178 keys 192 - 273 ...

Page 0 Page 1 Page 512 Page 513

178 273 50,956...

Binary Search: >51200, ≤ 51322

0 1 511Array Index: ...... 512 513

keys 50,992 - 51,200 keys 51,221 - 51,322keys 50,811 - 50,956

Page 511

...

51,200 51,322 ... ...

Load Page 513
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Example

keys 0 - 178 keys 192 - 273 ...

Page 0 Page 1 Page 512 Page 513

...

keys 50,992 - 51,200 keys 51,221 - 51,322keys 50,811 - 50,956

Page 511

...

...

Load Page 513

...
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Improving on Fence Pointers
● Store the Fence Pointers on Disk

– 512 x 8 byte keys per 4KB page
● Idea: Binary Search the Fence Pointers on Disk First

– 220 records / 64 records per page = 214 pages of records
– 214 fence pointer keys = 25 pages of fence pointers
– 512 = 29 keys per page

● Total pages searched: 5
= log(n) - log(records per page) - log(keys per page)
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Improving on Fence Pointers
● Example IO Requirements

– 5 reads for binary search on the Fence Pointer File
– 1 read on the data Array

● IO Complexity
– Cdata = Records per page (e.g., 64)
– Ckey = Keys per page (e.g., 512)
– Total complexity: log(n) - log(Cdata) - log(Ckey)
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Improving on Fence Pointers
● Idea: Multiple levels of fence pointers

– Store the greatest key of each fence pointer page.
– If it fits in memory, done!
– If not, add another level
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Improving on Fence Pointers
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Improving on Fence Pointers

....

Binary Search @ Level 0
 to find a Level 1 page

Binary Search @ Level 1
 to find a Data page

Binary Search @ Data
 to find the record
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Improving on Fence Pointers

...

...

......

...

... ...

Binary Search @ Level 0
 to find a Level 1 page

Binary Search @ Level 1
 to find a Level 2 page

Binary Search @ Level 2
 to find a Data page

Binary Search @ Data
 to find the record

What does this look like?

ISAM Index
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ISAM Index
● IO Complexity

– 1 read at L0 (or assume already in memory)
– 1 read at L1
– 1 read at L2
– ...
– 1 read at Lmax

– 1 read at Data level
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ISAM Index
● How many levels will there be?

– Level 0 : 1 page w/ Ckey keys
– Level 1 : Up to Ckey pages w/ Ckey2 keys 
– Level 2 : Up to Ckey2 pages w/ Ckey3 keys 
– Level 3 : Up to Ckey3 pages w/ Ckey4 keys 
– Level max : Up to Ckeymax pages w/ Ckeymax+1 keys 
– Data level : Up to Ckeymax+1 pages w/ Cdata Ckeymax+1 records
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ISAM Index

Number of Levels: = IO Complexity
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ISAM Index vs Binary Search...

...

...... ...

Like Binary Search, but “Cache-Friendly”
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ISAM Index
● As discussed: Disk → Memory

– Also works for Memory → Cache
● Ckey = 64/8 = 8
● log8(n) ≪ log2(n)
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ISAM Index

What if the data changes?
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