
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 25

CSE 250
Lecture 36
ISAM Indexes

Don’t need to read from disk
can read from book instead

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 25

Binary Search: Complexity
● IO Complexity:

– Stage 1:
● Each step does one load: O(log(n) - log(C)) = O(log(n))

– Stage 2:
● Exactly one load for the entire step: O(1)

– Total IO is the sum of the IOs of the component steps

IO Complexity scales as log2(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 25

How do we improve Binary Search?
● Trivial Solution:

– Preload the entire array into memory upfront
● Load once, re-use for all subsequent searches
● Problem: Works at 64MB, maybe not at 2TB

● Question: Do we need to preload the entire array?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 25

How do we improve Binary Search?
● Observation 1:

– 64 MB of 220 x sizeof(key + data)
vs

– 220 x 8B = 8 MB of keys
● Observation 2:

– We don’t need to know which array index the record is at
● ... only the page it’s on
● ... and each page stores a contiguous range of keys

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 25

Fence Pointers
● Idea: In-memory data structure with enough information to

identify which page a record is on.
– Precompute the (ideally smaller) data structure
– Re-use the in-memory data structure for all searches

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 25

Fence Pointers
● Precompute the greatest key in each page in memory

– n records; 64 records/page; n/64 keys
– e.g., n=220 records; Needs 214 keys

● 220 64 byte records = 64 MB
● 214 8 byte records = 219 bytes = 512 KB

– Call this a “Fence Pointer Table”

16,384 pages (Actual Data)

214 = 16,384 keys (Fence Pointer Table)RAM:

Disk:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 25

Example

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Binary Search: >273, ≤ 412

0 1 2 3Array Index: ...

Load Page 2

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 25

Example (Why “fence pointer”?)

keys 0 - 178 keys 192 - 273 keys 274-412 keys 458 - 611 ...

Page 0 Page 1 Page 2 Page 3

178 273 412 611 ...

Fences

Pointers

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 25

Fence Pointers
● Step 1: Binary Search on the Fence Pointer Table

– All in-memory (IO complexity = 0)
● Step 2: Load page

– One load (IO complexity = 1)
● Step 3: Binary search within page

– All in-memory (IO complexity = 0)
● Total IO Complexity: O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 25

Fence Pointers
● Memory Complexity:

– Need the entire fence pointer table in memory at all times
● O(n / C) pages = O(n)

– Steps 2, 3 load one more page
– Total: O(n+1) = O(n)

O(n) is... not ideal

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 25

Improving on Fence Pointers
● Store the Fence Pointers on Disk

– 512 x 8 byte keys per 4KB page
● Idea: Binary Search the Fence Pointers on Disk First

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 25

Example

keys 0 - 178 keys 192 - 273 ...

Page 0 Page 1 Page 512 Page 513

178 273 50,956...

Binary Search: >51200, ≤ 51322

0 1 511Array Index: 512 513

keys 50,992 - 51,200 keys 51,221 - 51,322keys 50,811 - 50,956

Page 511

...

51,200 51,322

Load Page 513

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 25

Example

keys 0 - 178 keys 192 - 273 ...

Page 0 Page 1 Page 512 Page 513

...

keys 50,992 - 51,200 keys 51,221 - 51,322keys 50,811 - 50,956

Page 511

...

...

Load Page 513

...

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 25

Improving on Fence Pointers
● Store the Fence Pointers on Disk

– 512 x 8 byte keys per 4KB page
● Idea: Binary Search the Fence Pointers on Disk First

– 220 records / 64 records per page = 214 pages of records
– 214 fence pointer keys = 25 pages of fence pointers
– 512 = 29 keys per page

● Total pages searched: 5
= log(n) - log(records per page) - log(keys per page)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 25

Improving on Fence Pointers
● Example IO Requirements

– 5 reads for binary search on the Fence Pointer File
– 1 read on the data Array

● IO Complexity
– Cdata = Records per page (e.g., 64)
– Ckey = Keys per page (e.g., 512)
– Total complexity: log(n) - log(Cdata) - log(Ckey)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 25

Improving on Fence Pointers
● Idea: Multiple levels of fence pointers

– Store the greatest key of each fence pointer page.
– If it fits in memory, done!
– If not, add another level

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 25

Improving on Fence Pointers

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 25

Improving on Fence Pointers

....

Binary Search @ Level 0
 to find a Level 1 page

Binary Search @ Level 1
 to find a Data page

Binary Search @ Data
 to find the record

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 25

Improving on Fence Pointers

...

...

......

...

... ...

Binary Search @ Level 0
 to find a Level 1 page

Binary Search @ Level 1
 to find a Level 2 page

Binary Search @ Level 2
 to find a Data page

Binary Search @ Data
 to find the record

What does this look like?

ISAM Index

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 25

ISAM Index
● IO Complexity

– 1 read at L0 (or assume already in memory)
– 1 read at L1
– 1 read at L2
– ...
– 1 read at Lmax

– 1 read at Data level

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 25

ISAM Index
● How many levels will there be?

– Level 0 : 1 page w/ Ckey keys
– Level 1 : Up to Ckey pages w/ Ckey2 keys
– Level 2 : Up to Ckey2 pages w/ Ckey3 keys
– Level 3 : Up to Ckey3 pages w/ Ckey4 keys
– Level max : Up to Ckeymax pages w/ Ckeymax+1 keys
– Data level : Up to Ckeymax+1 pages w/ Cdata Ckeymax+1 records

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 25

ISAM Index

Number of Levels: = IO Complexity

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 25

ISAM Index vs Binary Search...

...

...... ...

Like Binary Search, but “Cache-Friendly”

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 25

ISAM Index
● As discussed: Disk → Memory

– Also works for Memory → Cache
● Ckey = 64/8 = 8
● log8(n) ≪ log2(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 25

ISAM Index

What if the data changes?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

