
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 30

CSE 250
Lecture 34
Patterns in Data Science

And now for a brief paws

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 30

Data Science Is Everywhere
● The Corporate World (e.g. MANGA)
● Open Data → Civic Computing
● Science!
● Internet of Things

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 30

Data Science Data is Big
● O(f(n)): The behavior of f(n) as n gets really really big
● Data Science works with 100MBs, TBs of data

– n gets really really big

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 30

Today’s Lecture
● Examples of a data science pattern
● Algorithms for the pattern (← useful for PA4)
● Twists on the pattern (← advanced ideas, not covered on Final)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 30

Usage Pattern 1: MANGA
● Dataset: Sales

– productID: Int
– date: Date
– volume: Int

● Objective
– Find the 100 most purchased products from in the last

month (by ID)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 30

Usage Pattern 1: Open Data
● Dataset: TrafficViolations

– blockID: Int
– infraction: InfractionType
– date: Date

● Objective
– Find the fraction of parking tickets that were issued in each

block (by the block’s ID)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 30

Usage Pattern 1: Science!
● Dataset: Patient

– patientId: Int
– doseVolume: Double
– contractedCOVID: Boolean

● Objective
– What is the dosage that minimizes the rate of contracting

COVID.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 30

Usage Pattern 1: Internet of Things
● Dataset: EngineDailyLog

– engineID: Int
– date: Date
– kmTraveledToday: Double

● Objective:
– A train engine needs to be serviced every 30,000km. Which

engines need service?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 30

Usage Pattern 1: Aggregation
● Examples:

– “sum up __, for each__”
– “average __, by __”
– “number of __, for __”
– “biggest __, for each __”

● Pattern
– (Optionally) Group records by a “Group By” key
– For each group, compute a statistic

● e.g., sum, count, average, min, max

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 30

Aggregation

Code Example

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 30

Aggregation
● Twist 1: Not enough memory for all of the groups

– e.g., All of Amazon, Google’s users; LHC particles
– Idea: Use disk for storage

● Problem: Group-by keys not in any specific order, most
accesses will be random (slow).

● Idea: O(n) pass to organize the data

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 30

Buffered Writer

🖴
Buffer

Disk

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 30

Buffered Writer

🖴
Buffer

Disk

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 30

Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 30

Hash Partitioning

h(key) % N
= 0

h(key) % N
= 1

h(key) % N
= 2

h(key) % N
= N-1

...

O(n) writes to disk

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 30

Hash Aggregation

h(key) % N
= 0

1. Load file

2. Compute Aggregate In-Memory

3. Repeat for next file

All instances of a key will be in the same file
O(n) reads

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 30

Aggregation
● Twist 2: Distributed Computation

– Idea 1: Compute Locally, Send Aggregates
– Idea 2: Hash Partition (Shuffle) to each Computer

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 30

Usage Pattern 2: MANGA
● Dataset: Sales

– productID: Int
– date: Date
– volume: Int

● Dataset: Pricing
– productID: Int
– price: Boolean

● Objective
– Find the 100 products with greatest gross profit (by ID).

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 30

Usage Pattern 2: Open Data
● Dataset: TrafficViolations

– blockID: Int
– infraction: InfractionType
– date: Date

● Dataset: PropertyTaxAssessments
– buildingOwner: String
– blockID: Int
– assessment: Double

● Objective
– Plot the total taxes collected for a given block against the number of parking

tickets issued on that block.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 30

Usage Pattern 2: Science!
● Dataset: Trials

– patientId: Int
– doseVolume: Double

● Dataset: Infections
– patientId: Int
– date: Date

● Objective
– What is the dosage that minimizes the rate of contracting

COVID.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 26 / 30

Usage Pattern 2: Internet of Things
● Dataset: EngineDailyLog

– engineID: Int
– date: Date
– kmTraveledToday: Double
– locationID: Int

● Dataset: Locations
– locationID: Int
– shopSpacesAvailable: Int

● Objective:
– A train engine needs to be serviced every 30,000km. Are there more engines

that need service at a location than cab be serviced there?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 27 / 30

Usage Pattern 2: Joins
● Examples:

– “combine these datasets”
– “look up __ for each __”
– “join __ and __ on __”

● Pattern
– For each record in one dataset...
– ... find the corresponding record(s) in the other set
– Output each pair of matched records

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 30

Joins

Code Example

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 29 / 30

Joins
● Twist 1: Too much data to build a hash table in memory

– Idea: Hash-partition both datasets on the join key
● Twist 2: Distributed Computation

– Idea: Hash-partition both datasets on the join key
– Idea: Send only relevant data

● Create a Bloom Filter from the join keys of each dataset

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 30

For more...
● If you’re interested...

– CSE-305: How to build compilers for languages that can be
used to express common data science patterns

– CSE-460: How to organize data to make it easier to find
and apply tricks for common data science patterns

– CSE-462: How to build systems that automatically pick the
best data structure/algorithm for each data science pattern

– CSE-486: How to build systems that do these sorts of
computations “at scale”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

