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CSE 250
Lecture 34
Patterns in Data Science

And now for a brief paws
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Data Science Is Everywhere
● The Corporate World (e.g. MANGA)
● Open Data → Civic Computing
● Science!
● Internet of Things
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Data Science Data is Big
● O(f(n)): The behavior of f(n) as n gets really really big
● Data Science works with 100MBs, TBs of data

– n gets really really big
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Today’s Lecture
● Examples of a data science pattern
● Algorithms for the pattern (← useful for PA4)
● Twists on the pattern (← advanced ideas, not covered on Final)
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Usage Pattern 1: MANGA
● Dataset: Sales

– productID: Int
– date: Date
– volume: Int

● Objective 
– Find the 100 most purchased products from in the last 

month (by ID)
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Usage Pattern 1: Open Data
● Dataset: TrafficViolations

– blockID: Int
– infraction: InfractionType
– date: Date

● Objective 
– Find the fraction of parking tickets that were issued in each 

block (by the block’s ID)
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Usage Pattern 1: Science!
● Dataset: Patient

– patientId: Int
– doseVolume: Double
– contractedCOVID: Boolean

● Objective
– What is the dosage that minimizes the rate of contracting 

COVID.
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Usage Pattern 1: Internet of Things
● Dataset: EngineDailyLog

– engineID: Int
– date: Date
– kmTraveledToday: Double

● Objective:
– A train engine needs to be serviced every 30,000km.  Which 

engines need service?
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Usage Pattern 1: Aggregation
● Examples:

– “sum up __, for each__”
– “average __, by __”
– “number of __, for __”
– “biggest __, for each __”

● Pattern
– (Optionally) Group records by a “Group By” key
– For each group, compute a statistic

● e.g., sum, count, average, min, max
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Aggregation

Code Example
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Aggregation
● Twist 1: Not enough memory for all of the groups

– e.g., All of Amazon, Google’s users; LHC particles
– Idea: Use disk for storage

● Problem: Group-by keys not in any specific order, most 
accesses will be random (slow).

● Idea: O(n) pass to organize the data



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 30

Buffered Writer

🖴
Buffer

Disk
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Buffered Writer

🖴
Buffer

Disk
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Hash Partitioning

h(key) % N = 0

h(key) % N = 1

h(key) % N = 2 .
.
.
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Hash Partitioning

h(key) % N
= 0

h(key) % N
= 1

h(key) % N
= 2

h(key) % N
= N-1

...

O(n) writes to disk
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Hash Aggregation

h(key) % N
= 0

1. Load file

2. Compute Aggregate In-Memory

3. Repeat for next file

All instances of a key will be in the same file
O(n) reads
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Aggregation
● Twist 2: Distributed Computation

– Idea 1: Compute Locally, Send Aggregates
– Idea 2: Hash Partition (Shuffle) to each Computer
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Usage Pattern 2: MANGA
● Dataset: Sales

– productID: Int
– date: Date
– volume: Int

● Dataset: Pricing
– productID: Int
– price: Boolean

● Objective 
– Find the 100 products with greatest gross profit (by ID).
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Usage Pattern 2: Open Data
● Dataset: TrafficViolations

– blockID: Int
– infraction: InfractionType
– date: Date

● Dataset: PropertyTaxAssessments
– buildingOwner: String
– blockID: Int
– assessment: Double

● Objective 
– Plot the total taxes collected for a given block against the number of parking 

tickets issued on that block.
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Usage Pattern 2: Science!
● Dataset: Trials

– patientId: Int
– doseVolume: Double

● Dataset: Infections
– patientId: Int
– date: Date

● Objective
– What is the dosage that minimizes the rate of contracting 

COVID.
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Usage Pattern 2: Internet of Things
● Dataset: EngineDailyLog

– engineID: Int
– date: Date
– kmTraveledToday: Double
– locationID: Int

● Dataset: Locations
– locationID: Int
– shopSpacesAvailable: Int

● Objective:
– A train engine needs to be serviced every 30,000km.  Are there more engines 

that need service at a location than cab be serviced there?
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Usage Pattern 2: Joins
● Examples:

– “combine these datasets”
– “look up __ for each __”
– “join __ and __ on __”

● Pattern
– For each record in one dataset...
– ... find the corresponding record(s) in the other set
– Output each pair of matched records
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Joins

Code Example
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Joins
● Twist 1: Too much data to build a hash table in memory

– Idea: Hash-partition both datasets on the join key
● Twist 2: Distributed Computation

– Idea: Hash-partition both datasets on the join key
– Idea: Send only relevant data

● Create a Bloom Filter from the join keys of each dataset
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For more...
● If you’re interested...

– CSE-305: How to build compilers for languages that can be 
used to express common data science patterns

– CSE-460: How to organize data to make it easier to find 
and apply tricks for common data science patterns

– CSE-462: How to build systems that automatically pick the 
best data structure/algorithm for each data science pattern

– CSE-486: How to build systems that do these sorts of 
computations “at scale”
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