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CSE 250
Lecture 37 
Final Review
Day 1
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Logarithms
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Logarithms (refresher)
● Let
● Exponent rule:
● Product rule:
● Division rule:
● Change of base from b to c: 

– Base changes are only a constant factor off
● Log/Exponent are inverses:
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Asymptotic Analysis



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 55

Growth Functions

A growth function must be a non-decreasing function of the form

(non-negative integers) (positive real numbers)

f is a function from ... … to …
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Classify Functions by their Scaling

Functions that 
grow faster

Functions that 
grow slower

Functions that grow 
“at the same rate”

g(n)
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Big-Θ

Θ(g) is the set of 
functions 
where f “=” g

g(n)
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Big-O

O(g) is the set of 
functions 
where f “≤” g

g(n)
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Big-Ω

Ω(g) is the set of 
functions 
where f “≥” g

g(n)
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Types of Bounds
● [no qualifier] Runtime: The guaranteed runtime of the function

– O(g(n)): The algorithm never runs slower than c·g(n)
– Ω(g(n)): The algorithm never runs faster than c·g(n)
– Θ(g(n)): The algorithm always runs within [a·g(n), b·g(n)]

● Amortized Runtime: Guaranteed per-call runtime over n calls
– O(g(n)): n invocations of the algorithm take at most c·n·g(n)

● Expected Runtime: ‘Typical’ runtime without guarantees
– O(g(n)): The algorithm usually takes no more than c·g(n)

● ... but it’s random, it could take longer if you’re unlucky.
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Runtime Terminology
● “Worst-case” runtime

– The O() runtime of the function
● “Tight” runtime

– A bound (O or Ω) with no better bound of the same type.
● Remember that n = O(n2) (although it’s not tight)

– A Θ bound is always tight.
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Big-O
● Big-O (big oh) is an upper-bound on functions

for any two functions

is a set of functions

and          is in it if (and only if)
There’s some constant
and some “low”     value 

… where for every 
bigger than 

         is lower than      
scaled by 
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Big-Ω
● Big-Ω (big omega) is a lower-bound on functions

for any two functions

is a set of functions

and          is in it if (and only if)
There’s some constant
and some “low”     value 

… where for every 
bigger than 

         is greater than      
scaled by 
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Big-Θ
● Big-Θ (big theta) is a joint bound on functions

for any two functions

is a set of functions

and          is in it if (and only if)

is upper-bounded by

and          is also lower-bounded by
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Dominant Terms

exponential ≫ polynomial ≫ log ≫ constant
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Common Runtimes
● Constant Time: 

– e.g., 
● Logarithmic Time: 

– e.g., 
● Linear Time:

– e.g., 
● Quadratic Time:

– e.g., 
● Polynomial Time:

– e.g., 
● Exponential Time:
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Indexing into a Linked List
● Runtime to retrieve the ith element is linear in i

– O(i) is a tight bound: i ≤ O(i)
● O(i2) is a bound; i ≤ O(i2) (but not a tight one)

– Ω(i) is a tight bound: i ≥ Ω(i) 
– Since the runtime is O(i) and Ω(i), it is also Θ(i)
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Appending to an ArrayBuffer
● Runtime is either constant [typical case] OR linear [if resizing]

– O(n) is a tight bound: 1 ≤ O(n), n ≤ O(n)
– Ω(1) is a tight bound: 1 ≥ Ω(1), n ≥ Ω(1)
– There is no Θ bound (the tight O bound ≠ the tight Ω bound)

● Runtime of n appends is provably O(n) (and Θ(n), Ω(n))
– Amortized runtime of O(n)/n = O(1) 



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 55

Θ(i)
● Observation

– The only time when tight bounds O(f) ≠ Ω(f) is when f is 
● ...defined by cases.

– as in appending to an array buffer
● ...has variable runtimes

– e.g., indexing into a linked list is O(n), but Θ(i)
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Quick Sort
● Each level of splits takes O(n) total runtime

– Typically, each split will cut the input array in (nearly) half
● Will need log(n) levels of splits

– No guarantees: Unlikely, but might accidentally always 
pick the lowest value as a pivot for each split.

● Might need as many as n levels of splits
– Runtime: O(n2)
– Expected Runtime: O(n·log(n))
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Sequences
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Immutable Sequence ADTs
● apply(idx: Int): A

– Get the element (of type A) at position idx.
● iterator: Iterator[A]

– Get access to view all elements in the seq, in order, once.
● length: Int

– Count the number of elements in the seq.
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Mutable Sequence ADTs
● apply(idx: Int): A

– Get the element (of type A) at position idx.
● iterator: Iterator[A]

– Get access to view all elements in the seq, in order, once.
● length: Int

– Count the number of elements in the seq.
● insert(idx: Int, elem: A): Unit

– Insert the element at position idx with the value elem.
● remove(idx: Int): Unit

– Remove the element at position idx.
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Runtime Cost for Appends
● T(n) = insert cost + reserve cost = Θ(n) + Θ(n) = Θ(n)
● Append runtime is Amortized O(1)

– Runtime for one append is O(n)
– Runtime for n appends is Θ(n)

● “Amortized” describes runtime over the long run.
– reserve is only called log(n) times (very infrequently)
– Not quite the same as the “average” case

● Average case is the expected runtime over any input
● Here, Θ(n) is the runtime.

Amortized  ￫ Upfront costs paid off over time
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Overview

Function Array LL by Index LL by Pointer
apply Θ(1) Θ(i) Θ(1)
update Θ(1) Θ(i) Θ(1)
insert O(n) Θ(i) Θ(1)
remove O(n) Θ(i) Θ(1)
append Amortized O(1) Θ(1) Θ(1)
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Bubble Sort for Mutable Sequences
 1. def sort(seq: mutable.Seq[Int]): Unit = 
    {
 2.   val n = seq.length
 3.   for(i ← n – 2 to 0 by -1; j ← i to n)
      {
 4.     if(seq(j+1) < seq(j))
        {
 5.       val temp = seq(j+1)
 6.       seq(j+1) = seq(j)
 7.       seq(j) = temp
        }
      }
    }

Is the runtime T(n) = Θ(n2)?
  - What is the cost of seq(j+1) < seq(j)?
  - What is the cost of each seq(k)?
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Bubble Sort for Immutable Sequences
 1. def sort(seq: Seq[Int]): Seq[Int] = 
    {
 2.   val newSeq = seq.toArray
 3.   val n = seq.length
 4.   for(i ← n – 2 to 0 by -1; j ← 0 to i)
      {
 5.     if(newSeq(j+1) < newSeq(j))
        {
 6.       val temp = seq(j+1)
 7.       seq(j+1) = seq(j)
 8.       seq(j) = temp
        }
      }
 9.   return newSeq.toList
    }

Is the runtime T(n) = Θ(n2)?
  - What is the cost of seq.toArray?
  - What is the cost of newSeq.toList?



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 55

Searching Sequences
 1. def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
 2.   for(i ← from 0 until seq.length) {
 3.     if(seq(i).equals(value)) { return i }
      }
 4.   return -1
    } Expected runtime is T(n) = Θ(n)

 1. def count[T](seq: Seq[T], value: T): Int = {
 2.   var count = 0; var i = indexOf(seq, value, 0)
 3.   while(i != -1) {
 4.     count += 1; indexOf(seq, value, i+1)
      }
 5.   return count
    } Expected runtime is T(n) = Θ(n)
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Recursion
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Fibonacci Sequence Runtime
The runtime of a recursive function is easiest to represent with a recurrence relation

def fib(n: Int) = {
if(n == 0 || n == 1) { n }

   else { fib(n-1) + fib(n-2) }
}

(this specific recurrence has a closed form, but ask on Piazza)
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Factorial

def fact(n: Int): Long = {
if(n <= 0) { 1 }

   else { n * fact(n-1) }
}

What is the closed form?

How much space is used?
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Tail-Recursive Factorial

def fact(n: Int): Long = {
if(n <= 0) { 1 }

   else { n * fact(n-1) }
}

def fact(n: Int): Long = {
   var total = 1l
   for(i ← 1 to n) {
      total *= i 
   }
   return total
}

The compiler can
(sometimes)
figure this out on
its own!
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Divide and Conquer
● Recursive Solutions

– Solve a problem building from solution(s) to smaller 
versions of the same problem.

● The Divide and Conquer Strategy
– Divide problem into smaller subproblem(s)
– Conquer subproblem(s) by solving recursively
– Combine solutions to subproblem(s) into final solution
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Divide and Conquer
● Towers of Hanoi

– n = 1: Move disk directly
– n > 1: Solve n-1 subproblem 2 times (Conquer)

● Factorial
– n = 0: 1
– n >0: 

● Compute (n-1)!  (Conquer)
● Multiply by n (Merge)

No real “divide” step in any of these examples.
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Merge Sort
● If the sequence has 1 or 0 values: Done!
● If n > 1

– Divide: “Split” the sequence in half
– Conquer: Sort each half independently
– Combine: Merge halves together
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Merge Sort Analysis
● Suppose data is a sequence of size n

– Assume n is a power of 2 to simplify analysis
● Divide: “Split” the sequence in half           D(n) = Θ(n)
● Conquer: Sort left and right halves            a = 2, b = 2, c = 1
● Combine: Merge sorted halves together    C(n) = Θ(n)
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Merge Sort: Recursion Tree

At level i, there are       tasks, each with runtime

There are               levels in the tree
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Merge Sort: Inductive Analysis 
● Base Case: n = 1

● True for any n0 > 1, c > c’
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Merge Sort: Inductive Analysis
● Inductive step for step n > 1: assume for all m < n

–

● Now use that to show
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Stacks and Queues
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Stacks vs Queues

Stack Queue
● push(item)

➢ Insert at end of list
● pop

➢ Remove from end of list
● top

➢ Retrieve end of list

● enqueue(item)
➢ Insert at end of list

● dequeue
➢ Remove from front of list

● front
➢ Retrieve front of list
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Graphs
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Edge Types
● Directed Edge

– Ordered pair of vertices (u, v)
– origin (u) → destination (v)
– e.g., transmit bandwidth

● Undirected Edge
– Unordered pair of vertices (u, v)
– e.g., round-trip latency

● Directed Graph: All edges are directed
● Undirected Graph: All edges are undirected

100 mb/s

7 ms

openclipart.org
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Terminology
● Endpoints (end-vertices) of an edge

– U, V are the endpoints of a
● Edges incident on a vertex

– a, b, d are incident on V
● Adjacent Vertices

– U, V are adjacent
● Degree of a vertex (# of incident edges)

– X has degree 5
● Parallel Edges

– h, i are parallel
● Self-Loop

– j is a self-loop
● Simple Graph

– A graph without parallel edges or self-loops

U

V

W

Y

ZX

ba

ec

d

f

g

i

h j
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Edge List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(1) + O(vertex.incidentEdges)
● vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)

– (total cost to visit all out/in/incident edges)
● vertex.edgeTo: O(m)
● Space Used: O(n+m)
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Add an Adjacency List
class DirectedGraphV3[LV, LE]
{  
  def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge = 
  {
    val edge = new Edge(label)
    edge._listNode = edges.append(edge)
    orig._outEdges.append(edge)
    dest._inEdges.append(edge)
    return edge
  }
  class Vertex(_label: LV){
    val _outEdges: LinkedList[Edge]
    val _inEdges: LinkedList[Edge]
    // …
  }
}
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Adjacency List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.outEdges: O(|outEdges|) to visit all outEdges

– Same for vertex.inEdges, vertex.incidentEdges
● vertex.edgeTo: O(|outEdges|)
● Space Used: O(n+m)
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A few more terms...
● A subgraph S of a graph G is a graph where

– S’s vertices are a subset of G’s vertices
– S’s edges are a subset of G’s edges

● A spanning subgraph of G is a subgraph 
that contains all of G’s vertices

Subgraph

Spanning Subgraph
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A few more terms...
● A graph is connected if there is a path 

between every pair of vertices.
● A connected component is a maximal 

connected subgraph of G.
– Maximal means you can’t add any new 

vertex without breaking the property.
– Any subset of G’s edges that connects 

the subgraph is fine.

Connected Graph

Disconnected Graph

(2 connected components)
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A few more terms...
● A spanning tree of a connected graph is a spanning subgraph 

that is a tree.
– not unique unless the graph is a tree.

G

Another spanning tree of G A spanning tree of G
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Recall...
● Searching the maze with a Stack

– Try out every path, one at a time...
– … repeatedly backtrack and try another

● Searching the maze with a Queue
– Try out every path in parallel...
– … repeatedly pick a path and expand it by one step

Depth-First Search

Breadth-First Search
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Depth-First Search
● DFS Marking Vertices UNVISITED:
● DFS Marking Edges UNVISITED:
● DFS Vertex Loop:
● All Calls to DFSOne:
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Breadth-First Search
● Primary Goals

– Visit every vertex in the graph in increasing order of distance 
from the starting vertex

– Construct a spanning tree for every connected component
● Side effect: Compute connected components
● Side effect: Compute paths between pairs of vertices
● Side effect: Determine if the graph is connected
● Side effect: Identify cycles
● Side effect: Identify shortest paths to the starting vertex

– Complete in time O(|vertices|+|edges|)
– Complete with memory overhead O(|vertices|)
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Breadth-First Search
● BFS Marking Vertices UNVISITED:
● BFS Marking Edges UNVISITED:
● BFS Vertex Loop:
● All connected components:
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DFS vs BFS

Application DFS BFS
Spanning Trees ✅ ✅
Connected Components ✅ ✅
Paths/Connectivity ✅ ✅
Cycles ✅ ✅
Shortest Paths ✅
Articulation Points ✅


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

