
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 55

CSE 250
Lecture 37
Final Review
Day 1

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 55

Logarithms

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 55

Logarithms (refresher)
● Let
● Exponent rule:
● Product rule:
● Division rule:
● Change of base from b to c:

– Base changes are only a constant factor off
● Log/Exponent are inverses:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 55

Asymptotic Analysis

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 55

Growth Functions

A growth function must be a non-decreasing function of the form

(non-negative integers) (positive real numbers)

f is a function from ... … to …

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 55

Classify Functions by their Scaling

Functions that
grow faster

Functions that
grow slower

Functions that grow
“at the same rate”

g(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 55

Big-Θ

Θ(g) is the set of
functions
where f “=” g

g(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 55

Big-O

O(g) is the set of
functions
where f “≤” g

g(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 55

Big-Ω

Ω(g) is the set of
functions
where f “≥” g

g(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 55

Types of Bounds
● [no qualifier] Runtime: The guaranteed runtime of the function

– O(g(n)): The algorithm never runs slower than c·g(n)
– Ω(g(n)): The algorithm never runs faster than c·g(n)
– Θ(g(n)): The algorithm always runs within [a·g(n), b·g(n)]

● Amortized Runtime: Guaranteed per-call runtime over n calls
– O(g(n)): n invocations of the algorithm take at most c·n·g(n)

● Expected Runtime: ‘Typical’ runtime without guarantees
– O(g(n)): The algorithm usually takes no more than c·g(n)

● ... but it’s random, it could take longer if you’re unlucky.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 55

Runtime Terminology
● “Worst-case” runtime

– The O() runtime of the function
● “Tight” runtime

– A bound (O or Ω) with no better bound of the same type.
● Remember that n = O(n2) (although it’s not tight)

– A Θ bound is always tight.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 55

Big-O
● Big-O (big oh) is an upper-bound on functions

for any two functions

is a set of functions

and is in it if (and only if)
There’s some constant
and some “low” value

… where for every
bigger than

 is lower than
scaled by

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 55

Big-Ω
● Big-Ω (big omega) is a lower-bound on functions

for any two functions

is a set of functions

and is in it if (and only if)
There’s some constant
and some “low” value

… where for every
bigger than

 is greater than
scaled by

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 55

Big-Θ
● Big-Θ (big theta) is a joint bound on functions

for any two functions

is a set of functions

and is in it if (and only if)

is upper-bounded by

and is also lower-bounded by

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 55

Dominant Terms

exponential ≫ polynomial ≫ log ≫ constant

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 55

Common Runtimes
● Constant Time:

– e.g.,
● Logarithmic Time:

– e.g.,
● Linear Time:

– e.g.,
● Quadratic Time:

– e.g.,
● Polynomial Time:

– e.g.,
● Exponential Time:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 55

Indexing into a Linked List
● Runtime to retrieve the ith element is linear in i

– O(i) is a tight bound: i ≤ O(i)
● O(i2) is a bound; i ≤ O(i2) (but not a tight one)

– Ω(i) is a tight bound: i ≥ Ω(i)
– Since the runtime is O(i) and Ω(i), it is also Θ(i)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 55

Appending to an ArrayBuffer
● Runtime is either constant [typical case] OR linear [if resizing]

– O(n) is a tight bound: 1 ≤ O(n), n ≤ O(n)
– Ω(1) is a tight bound: 1 ≥ Ω(1), n ≥ Ω(1)
– There is no Θ bound (the tight O bound ≠ the tight Ω bound)

● Runtime of n appends is provably O(n) (and Θ(n), Ω(n))
– Amortized runtime of O(n)/n = O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 55

Θ(i)
● Observation

– The only time when tight bounds O(f) ≠ Ω(f) is when f is
● ...defined by cases.

– as in appending to an array buffer
● ...has variable runtimes

– e.g., indexing into a linked list is O(n), but Θ(i)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 55

Quick Sort
● Each level of splits takes O(n) total runtime

– Typically, each split will cut the input array in (nearly) half
● Will need log(n) levels of splits

– No guarantees: Unlikely, but might accidentally always
pick the lowest value as a pivot for each split.

● Might need as many as n levels of splits
– Runtime: O(n2)
– Expected Runtime: O(n·log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 55

Sequences

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 55

Immutable Sequence ADTs
● apply(idx: Int): A

– Get the element (of type A) at position idx.
● iterator: Iterator[A]

– Get access to view all elements in the seq, in order, once.
● length: Int

– Count the number of elements in the seq.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 55

Mutable Sequence ADTs
● apply(idx: Int): A

– Get the element (of type A) at position idx.
● iterator: Iterator[A]

– Get access to view all elements in the seq, in order, once.
● length: Int

– Count the number of elements in the seq.
● insert(idx: Int, elem: A): Unit

– Insert the element at position idx with the value elem.
● remove(idx: Int): Unit

– Remove the element at position idx.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 55

Runtime Cost for Appends
● T(n) = insert cost + reserve cost = Θ(n) + Θ(n) = Θ(n)
● Append runtime is Amortized O(1)

– Runtime for one append is O(n)
– Runtime for n appends is Θ(n)

● “Amortized” describes runtime over the long run.
– reserve is only called log(n) times (very infrequently)
– Not quite the same as the “average” case

● Average case is the expected runtime over any input
● Here, Θ(n) is the runtime.

Amortized ￫ Upfront costs paid off over time

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 55

Overview

Function Array LL by Index LL by Pointer
apply Θ(1) Θ(i) Θ(1)
update Θ(1) Θ(i) Θ(1)
insert O(n) Θ(i) Θ(1)
remove O(n) Θ(i) Θ(1)
append Amortized O(1) Θ(1) Θ(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 26 / 55

Bubble Sort for Mutable Sequences
 1. def sort(seq: mutable.Seq[Int]): Unit =
 {
 2. val n = seq.length
 3. for(i ← n – 2 to 0 by -1; j ← i to n)
 {
 4. if(seq(j+1) < seq(j))
 {
 5. val temp = seq(j+1)
 6. seq(j+1) = seq(j)
 7. seq(j) = temp
 }
 }
 }

Is the runtime T(n) = Θ(n2)?
 - What is the cost of seq(j+1) < seq(j)?
 - What is the cost of each seq(k)?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 27 / 55

Bubble Sort for Immutable Sequences
 1. def sort(seq: Seq[Int]): Seq[Int] =
 {
 2. val newSeq = seq.toArray
 3. val n = seq.length
 4. for(i ← n – 2 to 0 by -1; j ← 0 to i)
 {
 5. if(newSeq(j+1) < newSeq(j))
 {
 6. val temp = seq(j+1)
 7. seq(j+1) = seq(j)
 8. seq(j) = temp
 }
 }
 9. return newSeq.toList
 }

Is the runtime T(n) = Θ(n2)?
 - What is the cost of seq.toArray?
 - What is the cost of newSeq.toList?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 55

Searching Sequences
 1. def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
 2. for(i ← from 0 until seq.length) {
 3. if(seq(i).equals(value)) { return i }
 }
 4. return -1
 } Expected runtime is T(n) = Θ(n)

 1. def count[T](seq: Seq[T], value: T): Int = {
 2. var count = 0; var i = indexOf(seq, value, 0)
 3. while(i != -1) {
 4. count += 1; indexOf(seq, value, i+1)
 }
 5. return count
 } Expected runtime is T(n) = Θ(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 29 / 55

Recursion

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 55

Fibonacci Sequence Runtime
The runtime of a recursive function is easiest to represent with a recurrence relation

def fib(n: Int) = {
if(n == 0 || n == 1) { n }

 else { fib(n-1) + fib(n-2) }
}

(this specific recurrence has a closed form, but ask on Piazza)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 31 / 55

Factorial

def fact(n: Int): Long = {
if(n <= 0) { 1 }

 else { n * fact(n-1) }
}

What is the closed form?

How much space is used?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 32 / 55

Tail-Recursive Factorial

def fact(n: Int): Long = {
if(n <= 0) { 1 }

 else { n * fact(n-1) }
}

def fact(n: Int): Long = {
 var total = 1l
 for(i ← 1 to n) {
 total *= i
 }
 return total
}

The compiler can
(sometimes)
figure this out on
its own!

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 33 / 55

Divide and Conquer
● Recursive Solutions

– Solve a problem building from solution(s) to smaller
versions of the same problem.

● The Divide and Conquer Strategy
– Divide problem into smaller subproblem(s)
– Conquer subproblem(s) by solving recursively
– Combine solutions to subproblem(s) into final solution

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 34 / 55

Divide and Conquer
● Towers of Hanoi

– n = 1: Move disk directly
– n > 1: Solve n-1 subproblem 2 times (Conquer)

● Factorial
– n = 0: 1
– n >0:

● Compute (n-1)! (Conquer)
● Multiply by n (Merge)

No real “divide” step in any of these examples.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 35 / 55

Merge Sort
● If the sequence has 1 or 0 values: Done!
● If n > 1

– Divide: “Split” the sequence in half
– Conquer: Sort each half independently
– Combine: Merge halves together

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 36 / 55

Merge Sort Analysis
● Suppose data is a sequence of size n

– Assume n is a power of 2 to simplify analysis
● Divide: “Split” the sequence in half D(n) = Θ(n)
● Conquer: Sort left and right halves a = 2, b = 2, c = 1
● Combine: Merge sorted halves together C(n) = Θ(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 37 / 55

Merge Sort: Recursion Tree

At level i, there are tasks, each with runtime

There are levels in the tree

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 38 / 55

Merge Sort: Inductive Analysis
● Base Case: n = 1

● True for any n0 > 1, c > c’

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 39 / 55

Merge Sort: Inductive Analysis
● Inductive step for step n > 1: assume for all m < n

–

● Now use that to show

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 40 / 55

Stacks and Queues

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 41 / 55

Stacks vs Queues

Stack Queue
● push(item)

➢ Insert at end of list
● pop

➢ Remove from end of list
● top

➢ Retrieve end of list

● enqueue(item)
➢ Insert at end of list

● dequeue
➢ Remove from front of list

● front
➢ Retrieve front of list

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 42 / 55

Graphs

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 43 / 55

Edge Types
● Directed Edge

– Ordered pair of vertices (u, v)
– origin (u) → destination (v)
– e.g., transmit bandwidth

● Undirected Edge
– Unordered pair of vertices (u, v)
– e.g., round-trip latency

● Directed Graph: All edges are directed
● Undirected Graph: All edges are undirected

100 mb/s

7 ms

openclipart.org

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 44 / 55

Terminology
● Endpoints (end-vertices) of an edge

– U, V are the endpoints of a
● Edges incident on a vertex

– a, b, d are incident on V
● Adjacent Vertices

– U, V are adjacent
● Degree of a vertex (# of incident edges)

– X has degree 5
● Parallel Edges

– h, i are parallel
● Self-Loop

– j is a self-loop
● Simple Graph

– A graph without parallel edges or self-loops

U

V

W

Y

ZX

ba

ec

d

f

g

i

h j

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 45 / 55

Edge List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(1) + O(vertex.incidentEdges)
● vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)

– (total cost to visit all out/in/incident edges)
● vertex.edgeTo: O(m)
● Space Used: O(n+m)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 46 / 55

Add an Adjacency List
class DirectedGraphV3[LV, LE]
{
 def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge =
 {
 val edge = new Edge(label)
 edge._listNode = edges.append(edge)
 orig._outEdges.append(edge)
 dest._inEdges.append(edge)
 return edge
 }
 class Vertex(_label: LV){
 val _outEdges: LinkedList[Edge]
 val _inEdges: LinkedList[Edge]
 // …
 }
}

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 47 / 55

Adjacency List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.outEdges: O(|outEdges|) to visit all outEdges

– Same for vertex.inEdges, vertex.incidentEdges
● vertex.edgeTo: O(|outEdges|)
● Space Used: O(n+m)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 48 / 55

A few more terms...
● A subgraph S of a graph G is a graph where

– S’s vertices are a subset of G’s vertices
– S’s edges are a subset of G’s edges

● A spanning subgraph of G is a subgraph
that contains all of G’s vertices

Subgraph

Spanning Subgraph

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 49 / 55

A few more terms...
● A graph is connected if there is a path

between every pair of vertices.
● A connected component is a maximal

connected subgraph of G.
– Maximal means you can’t add any new

vertex without breaking the property.
– Any subset of G’s edges that connects

the subgraph is fine.

Connected Graph

Disconnected Graph

(2 connected components)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 50 / 55

A few more terms...
● A spanning tree of a connected graph is a spanning subgraph

that is a tree.
– not unique unless the graph is a tree.

G

Another spanning tree of G A spanning tree of G

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 51 / 55

Recall...
● Searching the maze with a Stack

– Try out every path, one at a time...
– … repeatedly backtrack and try another

● Searching the maze with a Queue
– Try out every path in parallel...
– … repeatedly pick a path and expand it by one step

Depth-First Search

Breadth-First Search

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 52 / 55

Depth-First Search
● DFS Marking Vertices UNVISITED:
● DFS Marking Edges UNVISITED:
● DFS Vertex Loop:
● All Calls to DFSOne:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 53 / 55

Breadth-First Search
● Primary Goals

– Visit every vertex in the graph in increasing order of distance
from the starting vertex

– Construct a spanning tree for every connected component
● Side effect: Compute connected components
● Side effect: Compute paths between pairs of vertices
● Side effect: Determine if the graph is connected
● Side effect: Identify cycles
● Side effect: Identify shortest paths to the starting vertex

– Complete in time O(|vertices|+|edges|)
– Complete with memory overhead O(|vertices|)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 54 / 55

Breadth-First Search
● BFS Marking Vertices UNVISITED:
● BFS Marking Edges UNVISITED:
● BFS Vertex Loop:
● All connected components:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 55 / 55

DFS vs BFS

Application DFS BFS
Spanning Trees ✅ ✅
Connected Components ✅ ✅
Paths/Connectivity ✅ ✅
Cycles ✅ ✅
Shortest Paths ✅
Articulation Points ✅

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

