
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 61

CSE 250
Lecture 38
Final Review
Day 2

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 61

Edge List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(1) + O(vertex.incidentEdges)
● vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)

– (total cost to visit all out/in/incident edges)
● vertex.edgeTo: O(m)
● Space Used: O(n+m)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 61

Add an Adjacency List
class DirectedGraphV3[LV, LE]
{
 def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge =
 {
 val edge = new Edge(label)
 edge._listNode = edges.append(edge)
 orig._outEdges.append(edge)
 dest._inEdges.append(edge)
 return edge
 }
 class Vertex(_label: LV){
 val _outEdges: LinkedList[Edge]
 val _inEdges: LinkedList[Edge]
 // …
 }
}

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 61

Adjacency List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.outEdges: O(|outEdges|) to visit all outEdges

– Same for vertex.inEdges, vertex.incidentEdges
● vertex.edgeTo: O(|outEdges|)
● Space Used: O(n+m)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 61

Binary Search Trees

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 61

Tree Terminology
● Rooted directed tree

– root is the topmost vertex
– EmptyTree contains 0 vertices, null for mutable tree.

● Parent references one or more children
– leaf vertex: Vertex with zero children

● Depth of a vertex
– Number of edges in the path from the root to the vertex

● Level of a vertex
– Depth + 1

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 61

Tree Terminology
● The size of a tree

– the number of vertices
– Typically represented as n

● The depth of a tree - the maximum depth of any node
– Typically represented as d

● The height of a vertex
– The maximum number of edges from vertex to any leaf

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 61

Tree Terminology
● A binary tree is a tree where

– every vertex has ≤2 children
● A full binary tree is a tree where

– all leaf vertices are at the lowest depth of the tree
– Every vertex has either 0 or 2 children

● Depth of a full tree:
● Size of a full tree:

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 61

Tree Traversals
● Pre-order (top-down)

– visit root, visit left subtree, visit right subtree
● In-order

– visit left subtree, visit root, visit right subtree
● Post-order (bottom-up)

– visit left subtree, visit right subtree, visit root

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 61

Computing the height of a tree
● Height (depth) of a tree = height of the root

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 61

Priority Queues / Heaps

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 61

Priority Queue
● PriorityQueue[A: Ordering]

– enqueue(v: A): Unit
● Insert value v into the priority queue

– head: A
● Retrieve the highest-priority value in the priority queue

– dequeue: A
● Remove the highest-priority value from the priority

queue

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 61

(Binary) Heap
● Idea: Keep the priority queue “kinda” sorted

– Keep larger items closer to the front of the list
– Trade off between...

● Moving larger elements forward
● Leaving some elements out-of-order

● Challenge: How track which elements are already sorted?
● Inspiration: Trees

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 61

(Binary) Heaps
● A (binary) heap is a tree-like structure with the properties:

– A complete (binary) tree
– Each vertex is “non-increasing” relative to its children

● Strictly decreasing if no duplicates present
● A complete (binary) tree is a tree where

– Each node has at most 2 children
– Every level except for the last is full

● Nodes in the last level are as far left as possible

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 61

Heaps
● What is the max depth of a binary heap?

– Level 1: 1 value
– Level 2: up to 2 values
– Level 3: up to 4 values
– Level 4: up to 8 values
– Level i: up to 2i values

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 61

Heap Methods
● isEmpty: Boolean
● length: Int
● head: A
● pushHeap(elem: A)
● popHeap: A

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 61

Heap Methods: pushHeap
● Idea: Insert into the next available location and then fix up

– Insert at next available location (call it current)
– While current isn’t root and parent < current

● Swap current and parent
● Repeat with current = parent

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 61

Heap Methods: popHeap
● Idea: Fill root with value in last filled location and then fix down

– Start with the root (call it current)
– While current isn’t a leaf and there’s a child < current

● Swap current and the larger child
● Repeat with current = child

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 61

Storing Heaps in Memory
● Observations:

– Each layer has a maximum size
– Each layer grows left-to-right
– Only the last layer grows

● Idea: Use an array to store the heap

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 61

Analysis
● pushHeap

– Append to end of ArrayBuffer
● Amortized O(1)

– fixUp
● log(n) steps, each O(1) = O(log(n))

● popHeap
– Remove end of ArrayBuffer

● O(1)
– fixDown

● log(n) steps, each O(1) = O(log(n))

O(log(n)) amortized
O(n) worst-case

O(log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 61

Binary Search Trees

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 61

Binary Search Tree
● Store key/value pairs (T = (K, V))

– Require an Ordering[K]
● Enforce constraints:

– No duplicate keys
– For every vertex vL in the left subtree of v1,

● vL.key < v1.key
– For every vertex vR in the right subtree of v1,

● vR.key > v1.key

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 61

BST Mutations

Operation Runtime

find

insert

remove

O(d)

O(d)

O(d)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 61

Tree Depth vs Size

A

B C

D E F G

d = O(log(n))

A
B

C
D

E
F

G

d = O(n)

height(left) ≈ height(right) height(left) height(right)≪

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 61

“Balanced” Trees
● Faster search: Want height(left) ≈ height(right)

– Make it more precise: |height(left) - height(right)| ≤ 1
– (left, right height differ by at most 1)

● Question: How do we keep the tree balanced?
– Option 1: Keep left/right subtrees within +/- 1 of each other

● Add a field to track the “imbalance factor”
– Option 2: Ensure leaves are at a minimum depth of d / 2

● Add a designation marking each node as red or black

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 26 / 61

Rebalancing Trees

A

B

X Y Z

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 27 / 61

Rebalancing Trees

A

B

X Y Z

Rotate(A, B)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 61

AVL Trees
● An AVL tree (Adelson-Velsky and Landis) is a BST where every

node is “depth-balanced”
– |depth(left subtree) - depth(right subtree)| < 1

● define balance(v) = height(v.right) - height(v.left)
– Maintain balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → “v is balanced”
● balance(v) = -1 → “v is left-heavy”
● balance(v) = 1 → “v is right-heavy”

If the balance constraint is obeyed, the tree must have Ω(2d) nodes (d = log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 29 / 61

Maintaining Balance
● Enforcing height-balance is too strict

– May require “unnecessary” rotations
● Weaker restriction:

– Balance the depth of EmptyTree nodes
– If a, b are EmptyTree nodes:

● depth(a) ≥ (depth(b) ÷ 2)
or

● depth(b) ≥ (depth(a) ÷ 2)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 61

d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

Balancing Empty Node Depth

A

B

d d

d-1

d/2

d/2

Must be full
(2 d/2⌈ ⌉ nodes)

d/2 = log(n)
d = 2log(n) = O(log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 31 / 61

Red-Black Trees
● Color each node red or black

1) # of black nodes from each empty to root must be identical
2) Parent of a red node must be black

● On Insertion (or deletion)
– Inserted node is red (won’t change # of black nodes)
– “Repair” violations of rule 2 by rotating or recoloring

● Each repair guarantees rule 1 is preserved
● Each repair creates at most 1 new violation of rule 2 at the parent.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 32 / 61

TreeSet[A: Ordering]
● add(a: A): Unit

– Insert a into the balanced binary search tree
● apply(a: A): Boolean

– Find a in the binary search tree, return true if found
● remove(a: A): Unit

– Remove a from the binary search tree

O(log(n))

O(log(n))

O(log(n))

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 33 / 61

TreeMap[K: Ordering, V]
● put(k: K, v: V): Unit

– Insert the pair (k,v) into the balanced binary search tree
according to the ordering on k.

● apply(k: K): V
– Find k in the binary search tree, return the matching v.

● remove(k: K): Unit
– Remove k from the binary search tree.

● range(from: K, until: K): TreeMap[K, V]
– Return a sub-map containing only keys in the range [from,until)

O(log(n))

O(log(n))

O(log(n))

O(log(n)+|range|)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 34 / 61

Hash Tables

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 35 / 61

Hash Table with Chaining
● Create an array of size N
● Pick an O(1) function h(k) to assign each record to [0,N)

– A record with key k can only be stored in bucket h(k)
– Use linked lists if the bin is occupied

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 36 / 61

Hash Table with Chaining

A B C D Y ZPAthos D’Artagnan Porthos

∅ ∅ ∅ ∅ ∅ ∅∅

∅

Aramis

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 37 / 61

Picking a Lookup Function
● Desirable Features for h(x)

– Fast
● needs to be O(1)

– “Unique”
● As few duplicate bins as possible

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 38 / 61

Hash Functions
● Examples

– SHA256 ← used by GIT
– MD5, BCRYPT ← used by unix login, apt
– MurmurHash3 ← used by Scala

● hash(x) is pseudorandom
1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for x ≠ y

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 39 / 61

Lookup Table
● We want fewer than INT_MAX buckets
● Store a record with key k in bucket h(k) % N

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 40 / 61

Modulus

0 1 2 3 5 64

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

h(k) =

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 41 / 61

Iterating over a hash table
● Runtime

– Visit every hash bucket
● O(N)

– Visit every element in every bucket
● O(n)

= O(N + n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 42 / 61

Hash Functions + Buckets

Everything is:

Idea: Make α a constant

Let’s call the load factor.

Fix an and start requiring that

What happens when the user inserts n = N x αmax + 1 records ?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 43 / 61

Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew

● Runtime?
– Allocate new array: O(1)
– Visit every hash bucket: O(Nold)
– Hash and copy each element to the new array: O(n)
– Free the old array: O(1)
– O(1) + O(Nold) + O(n) + O(1) = O(Nold+n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 44 / 61

Rehashing
● Whenever α > αmax, rehash to double size

– Contrast with ArrayBuffer
● Starting with N buckets, after n insertions..

– Rehash at n1 = αmax x N: From N to 2N Buckets
– Rehash at n2 = αmax x 2N: From 2N to 4N Buckets
– Rehash at n3 = αmax x 4N: From 4N to 8N Buckets
– ...
– Rehash at nj = αmax x 2jN: From 2j-1N to 2jN Buckets

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 45 / 61

Number of Rehashes
With n insertions...

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 46 / 61

Total Work

Total work after n insertions...

The i-th rehashing:

Rehashes required:

Work per insertion:
(ammortized cost)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 47 / 61

HashSet[A]
● add(a: A): Unit

– Compare all elements in bucket h(a) % N to a. If a match
is not present, insert a at the head.

● apply(a: A): Boolean
– Compare all elements in bucket h(a) % N to a. If a match is

found, return true.
● remove(a: A): Unit

– Compare all elements in bucket h(a) % N to a. If a match is
found, remove the matched element.

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 48 / 61

HashMap[K, V]
● put(k: K, v: V): Unit

– Compare the key of all elements in bucket h(k) % N to k. If a match
is present, remove it. Insert (k, v) at the head

● apply(k: K): V
– Compare the key of all elements in bucket h(k) % N to k. If a match

is found, return the corresponding value.
● remove(a: A): Unit

– Compare the key of all elements in bucket h(k) % N to k. If a match is
found, remove the matching element.

● NO range operation

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 49 / 61

Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 50 / 61

Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1

– Element not found

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 51 / 61

Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 52 / 61

Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 53 / 61

Linked Hash Table
● Iteration over Hash Table is O(N + n)

– Can be much slower than O(n)
● Idea: Connect entries together in a Doubly Linked List

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 54 / 61

Linked Hash Table

A B C D Y ZPAthos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 55 / 61

Linked Hash Table
● O(n) Iteration
● apply(x)

– O(1) increase in cost
● insert(x)

– O(1) increase in cost
● remove(x)

– O(1) increase in cost

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 56 / 61

Lossy Sets / Bloom Filters

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 57 / 61

“Lossy Sets”
● Set[A]

– add(a: A): Insert a into the set
– apply(a: A): Return true if a is in the set

add(A) apply(A)

● What if we didn’t need apply to be perfect?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 58 / 61

Lossy Sets
● LossySet[A]

– add(a: A): Insert a into the set.
– apply(a: A):

● If a is in the set, always return true
● If a is not in the set, usually return false

– Is allowed to return true, even if a is not in the set

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 59 / 61

Bloom Filters

class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A]
{
 val bits = new Array[Boolean](_size)

 def add(a: A): Unit = {
 for(i <- 0 until _k) { bits(ithHash(a, i) % _size) = true }
 }

 def apply(a: A): Boolean = {
 for(i <- 0 until _k) {
 if(!bits(ithHash(a, i) % _size) { return false; }
 }
 return true
 }
}

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 60 / 61

Bloom Filter Parameters
● _size

– Intuitively: More space, fewer collisions
● _k

– Intuitively: more hash functions means...
● ...more chances for one of b’s bits to be unset.
● ...more bits set = higher chance of collisions.

To preserve a constant false-positive rate:
 Grow _size as O(n)
 Value of _k is fixed for a given size.

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 61 / 61

Bloom Filters: Analysis
● N/n = 5 → ~10% collision chance
● N/n = 10 → ~1% collision chance

● 10 bits vs
– 32 bits for one Int (3 to 1 savings)
– 64 bits for a Double/Long (6 to 1 savings)
– ~8000 bits for a full record (800 to 1 savings)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

