
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 04
Runtime Analysis

Textbook Ch. 7.3-7.4

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Announcements

● Dr. Kennedy will be giving lecture on Friday and Monday
● PA 0 is due Friday
● Start PA 1 early!

From Lecture 01…

Option 1
● Very fast Prepend, Get First
● Very slow Get Nth

Option 2
● Very fast Get Nth, Get First
● Very slow Prepend

Option 3
● Very fast Get Nth, Get First
● Occasionally slow Prepend

From Lecture 01…

Option 1
● Very fast Prepend, Get First
● Very slow Get Nth

Option 2
● Very fast Get Nth, Get First
● Very slow Prepend

Option 3
● Very fast Get Nth, Get First
● Occasionally slow Prepend

What is fast? slow?

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implemtation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Attempt #1: Wall-clock time?

● What is fast?
○ 10s? 100ms? 10ns?
○ …it depends on the task

● Algorithm vs Implemtation
○ Compare Grace Hopper’s implementation to yours

● What machine are you running on?
○ Your old laptop? A lab machine? The newest, shiniest

processor?
● What bottlenecks exist? CPU vs IO vs Memory vs Network…

Wall-clock time is not terribly useful…

Let’s do a quick demo…

Comparing Random Access for Array vs List

Array List

Comparing Random Access for Array vs List

Array List

Let’s ignore the specific numbers and clean things up a bit…

Comparing Random Access for Array vs List

Array List

Comparing Random Access for Array vs List

Array List

What differentiates these two algorithms is how they
scale with input size (the shape of the function)

When is an algorithm “fast”?

● To give a useful solution, we should take “scale” into account
○ How does the runtime change as we change the size of the input

(number of users, records, pixels, elements, etc)
● Don’t think in terms of wall-time, think in terms of “number of steps”

Scaling Examples

● “Five steps plus Ten steps per user”
○ 5 + (10 x |Users|)

● “Ten steps per network connection. Each node has connections to 1%
of the other nodes in the system”
○ 10 x (|Users| x (0.01 x |Users|))

● “Seven steps for every possible pair of elements
○ 7 x 2|Users|

● “For each user, Ten steps, plus Three steps per post”
○ |Users| x (10 + 3 x |Posts|)

Scaling Examples

● “Five steps plus Ten steps per user”
○ 5 + (10 x |Users|)

● “Ten steps per network connection. Each node has connections to 1%
of the other nodes in the system”
○ 10 x (|Users| x (0.01 x |Users|))

● “Seven steps for every possible pair of elements
○ 7 x 2|Users|

● “For each user, Ten steps, plus Three steps per post”
○ |Users| x (10 + 3 x |Posts|)

Scaling Examples

● “Five steps plus Ten steps per user”
○ 5 + (10 x |Users|)

● “Ten steps per network connection. Each node has connections to 1%
of the other nodes in the system”
○ 10 x (|Nodes| x (0.01 x |Nodes|))

● “Seven steps for every possible pair of elements
○ 7 x 2|Users|

● “For each user, Ten steps, plus Three steps per post”
○ |Users| x (10 + 3 x |Posts|)

Scaling Examples

● “Five steps plus Ten steps per user”
○ 5 + (10 x |Users|)

● “Ten steps per network connection. Each node has connections to 1%
of the other nodes in the system”
○ 10 x (|Nodes| x (0.01 x |Nodes|))

● “Seven steps for every possible pair of elements
○ 7 x 2|Elements|

● “For each user, Ten steps, plus Three steps per post”
○ |Users| x (10 + 3 x |Posts|)

Scaling Examples

● “Five steps plus Ten steps per user”
○ 5 + (10 x |Users|)

● “Ten steps per network connection. Each node has connections to 1%
of the other nodes in the system”
○ 10 x (|Nodes| x (0.01 x |Nodes|))

● “Seven steps for every possible pair of elements
○ 7 x 2|Elements|

● “For each user, Ten steps, plus Three steps per post”
○ |Users| x (10 + 3 x |Posts|)

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

Runtime as a Function

Would you consider an algorithm that takes |Users|! number of steps?

maybe…

NO!

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

When is an algorithm “fast”?

● To give a useful solution, we should take “scale” into account
○ How does the runtime change as we change the size of the input

(number of users, records, pixels, elements, etc)
● Don’t think in terms of wall-time, think in terms of “number of steps”

When is an algorithm “fast”?

● To give a useful solution, we should take “scale” into account
○ How does the runtime change as we change the size of the input

(number of users, records, pixels, elements, etc)
● Don’t think in terms of wall-time, think in terms of “number of steps”
● Focus on “large” inputs

○ Rank functions based on how they behave at large scales

Runtime as a Function

Which is better? 3x|Users|+5 or |Users|2

In CSE 250, we live over
here

Goal: Ignore implementation details

Seasoned Pro Implementation Error 23: Cat on Keyboard

vs

Goal: Ignore execution environment

vs

Intel i9
Images from openclipart.org, used with permission

Motorola 68000

Goal: Judge the Algorithm Itself

● How fast is a step? Don’t care
○ Only count number of steps

● Can this be done in two steps instead of one?
○ “3 steps per user” vs “some number of steps per user”
○ Sometimes we don’t care…sometimes we do

When is an algorithm “fast”?

● To give a useful solution, we should take “scale” into account
○ How does the runtime change as we change the size of the input

(number of users, records, pixels, elements, etc)
● Don’t think in terms of wall-time, think in terms of “number of steps”
● Focus on “large” inputs

○ Rank functions based on how they behave at large scales

When is an algorithm “fast”?

● To give a useful solution, we should take “scale” into account
○ How does the runtime change as we change the size of the input

(number of users, records, pixels, elements, etc)
● Don’t think in terms of wall-time, think in terms of “number of steps”
● Focus on “large” inputs

○ Rank functions based on how they behave at large scales
● Decouple algorithm from infrastructure/implementation

○ Asymptotic notation…?

And now a brief interlude…

Logarithms (refresher)

Let a, b, c, n > 0

Exponent Rule:

Product Rule:

Division Rule:

Change of Base:

Log/Exponent are Inverses:

log(na) = a log(n)

log(an) = log(a) + log(n)

log(n/a) = log(n) - log(a)

logb(n) = logc(n) / logb(n)

blog(n) = logb(bn) = n

Logarithms (refresher)

Let a, b, c, n > 0

Exponent Rule:

Product Rule:

Division Rule:

Change of Base:

Log/Exponent are Inverses:

In this class, always assume log base 2 unless specified otherwise

log(na) = a log(n)

log(an) = log(a) + log(n)

log(n/a) = log(n) - log(a)

logb(n) = logc(n) / logb(n)

blog(n) = logb(bn) = n

Now back to “fast”...

Attempt #2: Growth Functions

Not a function in code…but a mathematical function:

n: The “size” of the input

ie: number of users,rows, pixels, etc

f(n): The number of “steps” taken for input of size n

ie: 20 steps per user, where n = |Users|, is 20 x n

Some Basic Assumptions:

Problem sizes are non-negative integers

We can’t reverse time…(obviously)

Smaller problems aren’t harder than bigger problems

Some Basic Assumptions:

Problem sizes are non-negative integers

We can’t reverse time…(obviously)

Smaller problems aren’t harder than bigger problems

First Problem…

We are still implementation dependent

First Problem…

We are still implementation dependent

Does 1 extra step per
element really matter…?

First Problem…

We are still implementation dependent

f1 and f2 are much
more “similar” to
each other than they
are to f3

How Do We Capture Behavior at Scale?

Consider the following two functions:

How Do We Capture Behavior at Scale?

How Do We Capture Behavior at Scale?

After this point,
these functions
behave the same
(they stay about
100x apart)

How Do We Capture Behavior at Scale?

How Do We Capture Behavior at Scale?

How Do We Capture Behavior at Scale?

These terms go to 0

How Do We Capture Behavior at Scale?

Attempt #3: Asymptotic Analysis

Consider two functions, f(n) and g(n)

In this particular case, f grows w.r.t. n faster than g

So…if f(n) and g(n) are the number of steps two different algorithms take
on a problem of size n, which is better?

Attempt #3: Asymptotic Analysis

Case 1: (f grows faster; g is better)

Case 2: (g grows faster; f is better)

Case 3: (f and g “behave” the same)

Goal of “Asymptotic Analysis”

We want to organize runtimes (growth functions)
into different Complexity Classes

Within the same complexity class, runtimes “behave
the same”

Goal of “Asymptotic Analysis”

We want to organize runtimes (growth functions)
into different Complexity Classes

Within the same complexity class, runtimes “behave
the same”

“Strategic Optimization” focuses on improving the
complexity class of your code!

Back to Our Previous Example…

The 10n and 1000000 log(n) “don’t matter”

The 1/100 “does not matter”

Back to Our Previous Example…

The 10n and 1000000 log(n) “don’t matter”

The 1/100 “does not matter”

n3 is the dominant term, and that determines the “behavior”

Why Focus on Dominating Terms?

10 20 50 100 1000
0.43 ns 0.52 ns 0.62 ns 0.68 ns 0.82 ns

0.83 ns 1.01 ns 1.41 ns 1.66 ns 2.49 ns

2.5 ns 5 ns 12.5 ns 25 ns 0.25 µs

8.3 ns 22 ns 71 ns 0.17 µs 2.49 µs

25 ns 0.1 µs 0.63 µs 2.5 µs 0.25 ms

25 µs 0.8 ms 78 ms 2.5 s 2.9 days
0.25 µs 0.26 ms 3.26 days 1013 years 10284 years
0.91 ms 19 years 1047 years 10141 years 🤯

Why Focus on Dominating Terms?

