
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 07
Runtime Analysis with Examples

Textbook Ch. 7.3-7.4

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Announcements

● I'm back (obviously…)
● PA1 due on Friday at 11:59pm

○ Be wary of availability after 5:00pm…

Recap of Runtime Complexity

Big-𝚯
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

Recap of Runtime Complexity

Big-𝚯 — Tight Bound
● Growth functions are in the same complexity class
● If f(n) ∈ 𝚯(g(n)) then an algorithm taking f(n) steps is as "exactly" as fast as one that takes g(n)

steps.

Big-O — Upper Bound
● Growth functions in the same or smaller complexity class.
● If f(n) ∈ O(g(n)), then an algorithm that takes f(n) steps is at least as fast as one taking g(n) (but it

may be even faster).

Big-𝛀 — Lower Bound
● Growth functions in the same or bigger complexity class
● If f(n) ∈ 𝛀(g(n)), then an algorithm that takes f(n) steps is at least as slow as one that takes g(n)

steps (but it may be even slower)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1)

Logarithmic Time: 𝚯(log(n))

Linear Time: 𝚯(n)

Quadratic Time: 𝚯(n2)

Polynomial Time: 𝚯(nk) for some k > 0

Exponential Time: 𝚯(cn) (for some c ≥ 1)

Common Runtimes (in order of complexity)

Constant Time: 𝚯(1) T(n) = c

Logarithmic Time: 𝚯(log(n)) T(n) = c log(n)

Linear Time: 𝚯(n) T(n) = c1n + c0

Quadratic Time: 𝚯(n2) T(n) = c2n2 + c1n1 + c0

Polynomial Time: 𝚯(nk) for some k > 0 T(n) = ckn
k + … + c1n + c0

Exponential Time: 𝚯(cn) (for some c ≥ 1) T(n) = cn

Constants vs Asymptotics

Given the following pseudocode:

for (i ← 0 until n) { /* do work */ }

If the /* do work */ portion of the code originally takes 10 steps…

But we optimize it to now take 7 steps…

Our total runtime goes from 10n steps to 7n steps: 30% faster!

…but still 𝚯(n)

c and n
0

Compare the two runtimes:

T1(n) = 100n

T2(n) = n2

● 100n = O(n2) (T2 is the slower runtime)
● …but chig = 1, n0 = 100
● Until our input size reaches 100 or more, T2 is the faster runtime

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

● An algorithm with runtime T2 is better on small inputs
● An algorithm with runtime T2 might be easier to implement/maintain
● An algorithm with runtime T1 might not exists

Takeaways

Asymptotically slower runtimes can be better in real-world situations.

● An algorithm with runtime T2 is better on small inputs
● An algorithm with runtime T2 might be easier to implement/maintain
● An algorithm with runtime T1 might not exists

(sometimes this is provable…see CSE 331)

Takeaways

The important thing is learning the tools to reason about the different
algorithms and why you might choose one over the other!

Takeaways

The important thing is learning the tools to reason about the different
algorithms and why you might choose one over the other!

…But for this class, we can assume that if T2(n) is in a bigger complexity
class, then T1(n) is better/faster/stronger.

Now some examples…
…and common pitfalls

Bubble Sort

What is the runtime complexity class for bubblesort?

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

Helpful
Summation
Rules

Bubble Sort

Note: We can ignore the exact number of steps required by a portion of
the algorithm, as long as we know its complexity…

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

Bubble Sort

Note: We can ignore the exact number of steps required by a portion of
the algorithm, as long as we know its complexity…

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

Lines 4-5 are executed exactly n-1 times,
but we can treat this as O(n) steps for the
inner loop…or can we…?

Bubble Sort

Note: We can ignore the exact number of steps required by a portion of
the algorithm, as long as we know its complexity…

Can we safely say this algorithm is 𝚯(n2)?

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

Lines 4-5 are executed exactly n-1 times,
but we can treat this as O(n) steps for the
inner loop…or can we…?

Bubble Sort

Note: We can ignore the exact number of steps required by a portion of
the algorithm, as long as we know its complexity…

Can we safely say this algorithm is 𝚯(n2)?

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

What is the complexity of this step?

Bubble Sort

Note: We can ignore the exact number of steps required by a portion of
the algorithm, as long as we know its complexity…

Can we safely say this algorithm is 𝚯(n2)?

 bubblesort(seq: Seq[Int]):
 1. n ← seq length
 2. for i ← n-2 to 0, by -1:
 3. for j ← i to n-1:
 4. if seq(j+1) < seq(j):
 5. swap seq(j) and seq(j+1)

What is the complexity of this step?
Do not assume function calls take O(1) time!

Bubble Sort on Mutable Data

def sort(seq: mutable.Seq[Int]): Unit = {
 val n = seq.length
 for(i <- n - 2 to 0 by -1; j <- i to n) {
 if(seq(n) < seq(j)) {
 val temp = seq(j+1)
 seq(j+1) = seq(j)
 seq(j) = temp
 }
 }
}

Bubble Sort on Immutable Data

def sort(seq: Seq[Int]): Seq[Int] = {
 val newSeq = seq.toArray
 val n = seq.length
 for(i <- n - 2 to 0 by -1; j <- i to n) {
 if(newSeq(n) < newSeq(j)) {
 val temp = newSeq(j+1)
 newSeq(j+1) = newSeq(j)
 newSeq(j) = temp
 }
 }
 return newSeq.toList
}

Searching Sequences

def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
 for(i <- from until seq.length) {
 if(seq(i).equals(value)) { return i }
 }
 return -1
}

What is the complexity?

Searching Sequences

def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
 for(i <- from until seq.length) {
 if(seq(i).equals(value)) { return i }
 }
 return -1
}

What is the complexity? O(n)

Searching Sequences

def count[T](seq: Seq[T], value: T): Int ={
 var count = 0;
 var i = indexOf(seq, value, 0)
 while(i != -1) {
 count += 1;
 i = indexOf(seq, value, i+1)
 }
 return count
}

What is the complexity?

Searching Sequences

def count[T](seq: Seq[T], value: T): Int ={
 var count = 0;
 var i = indexOf(seq, value, 0)
 while(i != -1) {
 count += 1;
 i = indexOf(seq, value, i+1)
 }
 return count
}

What is the complexity? O(n)?

Searching Sequences

def count[T](seq: Seq[T], value: T): Int ={
 var count = 0;
 var i = indexOf(seq, value, 0)
 while(i != -1) {
 count += 1;
 i = indexOf(seq, value, i+1)
 }
 return count
}

What is the complexity? O(n)? What about this line?

Searching Sequences

def count[T](seq: Seq[T], value: T): Int ={
 var count = 0;
 var i = indexOf(seq, value, 0)
 while(i != -1) {
 count += 1;
 i = indexOf(seq, value, i+1)
 }
 return count
}

What is the complexity? O(n)? What about this line? How many while iterations?

Searching Sequences

def count[T](seq: Seq[T], value: T): Int ={
 var count = 0;
 var i = indexOf(seq, value, 0)
 while(i != -1) {
 count += 1;
 i = indexOf(seq, value, i+1)
 }
 return count
}

What is the complexity? Each element is only checked once, so O(n).

Searching Sorted Sequences

● Assuming O(1) access to elements ('random access')
○ Divide the set of elements in half by taking the "middle" element, m

■ If m is greater than what we are looking for, search the lower half
■ If m is less than what we are looking for, search the right half
■ Repeat until you've found the element or you can't divide in half

Searching Sorted Sequences

● Assuming O(1) access to elements ('random access')
○ Divide the set of elements in half by taking the "middle" element, m

■ If m is greater than what we are looking for, search the lower half
■ If m is less than what we are looking for, search the right half
■ Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half?

Searching Sorted Sequences

● Assuming O(1) access to elements ('random access')
○ Divide the set of elements in half by taking the "middle" element, m

■ If m is greater than what we are looking for, search the lower half
■ If m is less than what we are looking for, search the right half
■ Repeat until you've found the element or you can't divide in half

If you have n elements, how many times can you divide n in half?
log(n)

