CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall Day 08
Collections, Sequences and ADTs

Textbook Ch. 7.1, 1.7.2

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Announcements

e PA1 deadline extended to Monday

e PAT1 #4 grading error was resolved
o Any final submissions today will receive maximum bonus points

Sequences (what are they?)

e Examples
Fibonacci Sequence: 1,1, 2,3, 5, 8, 13, 21, 34, ...
Characters in a String: 'H', e, 'I',','0, ", W', 0, r, I, 'd
Lines in a File

People in a queue

Sequences (what are they?)

e Examples
Fibonacci Sequence: 1,1, 2,3, 5, 8, 13, 21, 34, ...
Characters in a String: 'H', e, 'I',','0, ", W', 0, r, I, 'd
Lines in a File
People in a queue

An "ordered” collection of elements

Sequences (what can you do with them?)

e Enumerate every element in sequence

o ie: print out every element, sum every element
e Getthe "nth" element

o ie:whatis the first element? what is the 42nd element?
e Modify the "nth" element

o ie: set the first element to x, set the third element toy

Abstract Data Types (ADTs)

e The specification of what a data structure can do

Read everything

Read "nth" element

Update "nth" element

Abstract Data Types (ADTs)

e The specification of what a data structure can do

What's in the box? ..we
/ don't know, and in some

Read everything sense..we don't care

Read "nth" elen¥

Update "nth" element

Usage is governed by what we can do, not how it is done

The Seq ADT

apply (idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

Themutable.Seqg ADT

apply (idx: Int): [A]
Get the element (of type A) at position idx

iterator: Iterator[A]
Get access to view all elements in the sequence, in order, once

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove (idx: Int): A
Remove the element at position idx, and return the removed value

So...what's in the box?
(how do we implement it)

A Brief Aside on RAM (220 crossover)

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100
01101111...

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100

H e I I 0

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100

H e I I 0

Array

A Brief Aside on RAM (220 crossover)

01001000 01100101 01101100 01101100

H e I I 0

fixed number of elements

(|

{ fixed element size

Array

ALY

new T ()
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

ALY

new T ()
Go find some unused part of memory that is big enough to fit a T,
mark it as used, and return the address of that location in memory.

var arr = new Array[Int] (50)

The above code allocates 50 * 4 = 200 bytes of memory
(a single Scala Int takes of 4 bytes in memory)

Element Access

var arr = new Array[Int] (50)

If arr is at address a, where should you look for arr (19) ?

Element Access

var arr = new Array[Int] (50)

If arr is at address a, where should you look for arr (19) ?
e a+19*4 (aconstant number of steps to compute...)

Random Access for an Array (Lecture 04)

runtime (s)

!

Array

00000

0000000

Random Access for an Array (Lecture 04)

Array

runtime (s)
i

0000000

Notice how our runtime doesn't depend on the size of the array

Element Access

var arr = new Array[Int] (50)

If arr is at address a, where should you look for arr (19) ?
e a+19*4 (aconstant number of steps to compute...)

What about a (55) ?

Element Access

var arr = new Array[Int] (50)

If arr is at address a, where should you look for arr (19) ?
e a+19*4 (aconstant number of steps to compute...)

What about a (55) ?
e a+55*4 . .butthat memory was not reserved for this array.
e Scala will prevent you from accessing an out of bounds element

Array[T] : Seq[T]

What does an Array of n items of type T actually look like?

e 4 bytes for n (optional)
e 4 bytes for sizeof (T) (optional)
e n*sizeof (T) bytes for the data

Array[T] : Seq[T]

What does an Array of n items of type T actually look like?

e 4 bytes for n (optional)
e 4 bytes for sizeof (T) (optional)
e n*sizeof (T) bytes for the data

N sizeof(T) a(O) 8(1) 8(2) a(3) 3(4)

Array[T] : Seq[T]

Given the structure of an Array, how would we implement the methods of the Seq ADT:

apply (idx: Int): [A]
Get the element (of type &) at position idx

length: Int
Count the number of elements in the seq

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove (idx: Int): A
Remove the element at position idx, and return the removed value

Array[T] : Seq[T]

Given the structure of an Array, how would we implement the methods of the Seq ADT:

apply (idx: Int): [A]
Get the element (of type &) at position idx

length: Int Insert and remove don't
Count the number of elements in the seq make sense on arrays...

insert(idx: Int, elem: A): Unit
Insert an element at position idx with value elem

remove (idx: Int): A
Remove the element at position idx, and return the removed value

How can we make it mutable?

IDEA: What if we reserve extra space?

ArrayBuffer|[T] :Buffer|[T]

What does an ArrayBuffer of n items of type T actually look like?

4 bytes for n (optional)

4 bytes for sizeof (T) (optional)

4 bytes for the number of used fields
n*sizeof (T) bytes for the data

4 bytes for n (optional)
4 bytes for sizeof (T) (optional)
4 bytes for the number of used fields
n*sizeof (T) bytes for the data

ArrayBuffer|[T] :Buffer|[T]

What does an ArrayBuffer of n items of type T actually look like?

sizeof(T)

a(1)
or
None

a(2)
or
None

a(3)
or
None

a(4)
or
None

To be continued...

