CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall Day 15
Stacks, Queues, and Mazes (oh my)

Textbook Ch. 7

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Recap

Stacks: Last In First Out (LIFO)
e Push (put item on top of the stack)
e Pop (take item off top of stack)
e Top (peek at top of stack)

Queues: First in First Out (FIFO)
e Enqueue (put item on the end of the queue)
e Dequeue (take item off the front of the queue)
e Head (peek at the item in the front of the queue)

Recap

Stacks: Last In First Out (LIFO)

e Push (put item on top of the stack) O(1) (or amortized 0(1))
e Pop (take item off top of stack) 0(1)
e Top (peek at top of stack) o(1)

Queues: First in First Out (FIFO)
e Enqueue (put item on the end of the queue) 0
e Dequeue (take item off the front of the queue) o(1)
e Head (peek at the item in the front of the queue) 0

Thought Question: How could you use an array to build a queue?

ArrayBuffer Attempt 1

Enqueue: Append(...)

Dequeue: Remove(0)

ArrayBuffer Attempt 1

Enqueue: Append(...)
Dequeue: Remove(0)

What is the complexity?

ArrayBuffer Attempt 1

Enqueue: Append(...) Amortized 0(1)
Dequeue: Remove(0) O(n)

What is the complexity?

ArrayBuffer Attempt 2

Enqueue: Insert(0)

Dequeue: Remove(last)

ArrayBuffer Attempt 2

Enqueue: Insert(0)
Dequeue: Remove(last)

What is the complexity?

ArrayBuffer Attempt 2

Enqueue: Insert(0) O(n)
Dequeue: Remove(last) e(1)
What is the complexity?

Can we avoid the cost of moving all of the elements forward or backward
each time we add or remove?

Can we avoid the cost of moving all of the elements forward or backward
each time we add or remove?

Why didn't we have to pay that cost with a list?

Can we avoid the cost of moving all of the elements forward or backward
each time we add or remove?

Why didn't we have to pay that cost with a list?

Update our values of "first" and "last"!

front

E

88

13

14

26

back

e

front

E

88

13

14

26

enqueue(5)

back

e

front

E

88

13

14

26

enqueue(5)
enqueue(4)

back

88|13 |14 26| 5 | 4

////// ‘\\\\ back

enqueue(5)
enqueue(4)
dequeue()

front

front

13|14 | 26

enqueue(5)
enqueue(4)
dequeue()
dequeue()

back

14 | 26

front

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()

back

back

14 | 26

front

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
enqueue(7)

back

12 14126 5 | 4 | 7

front

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
enqueue(7)
enqueue(12)

back

12

26

5

N

enqueue(5)
enqueue(4)

dequeue()
dequeue()
dequeue()

enqueue(7)
enqueue(12)

dequeue()

front

back

12

26

5

N

enqueue(5)
enqueue(4)
dequeue()
dequeue()
dequeue()
enqueue(7)
enqueue(12)
dequeue()
enqueue(-3)

front

ArrayDeque (Resizable Ring Buffer)

Active Array = [start, end)

Enqueue
1. Resize buffer if needed
2. Add new element at buffer[end]
3. Advance end pointer (wrap to front as needed)

Dequeue
1. Remove element at buffer[start]
2. Advance start pointer (wrap to front as needed)

ArrayDeque (Resizable Ring Buffer)

Active Array = [start, end)

Enqueue
1. Resize buffer if needed
2. Add new element at buffer[end]
3. Advance end pointer (wrap to front as needed)

Dequeue
1. Remove element at buffer[start]
2. Advance start pointer (wrap to front as needed)

What is the complexity?

ArrayDeque (Resizable Ring Buffer)

Active Array = [start, end)

Enqueue Amortized O(1)
1. Resize buffer if needed
2. Add new element at buffer[end]
3. Advance end pointer (wrap to front as needed)

Dequeue O(1)
1. Remove element at buffer[start]
2. Advance start pointer (wrap to front as needed)

What is the complexity?

Why Ring Buffer?

|4|7 12 | -3

/ N

back
front

Why Ring Buffer?

|4|7 12 | -3

/ N

back

front

Conceptually, we can think of this as a ring...

Why Ring Buffer?

Why Ring Buffer?

Why Ring Buffer?

Why Ring Buffer?

Why Ring Buffer?

Why Ring Buffer?

Applications of Stacks and Queue

Stack: Checking for balanced parentheses/braces
Queue: Scheduling packets for delivery

Both: Searching mazes

Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {(}) is not ok).

{OED}Y {0) ()

Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {(}) is not ok).

{OED}Y {0) ()

v/

Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {(}) is not ok).

{OED}Y {0) ()

v/ X

Balanced Parentheses/Braces

What does it mean for parentheses/braces to be balanced?

1. Every opening symbol is matched by a closing symbol
2. No nesting overlaps (ie {(}) is not ok).

{OED}Y {0) ()

v/ X X

Idea: Count the number of unmatched open parens/braces.

Increment counter on (, decrement on)

Idea: Count the number of unmatched open parens/braces.

Increment counter on (, decrement on)

Problem: allows for {(})

Idea: Track nesting on a stack!

On (or {, push the symbol on the stack.

On) or }, pop the stack and check for a match.

Demo in Section B Slides:

[https://odin.cse.buffalo.edu/teaching/cse-250/2022fa/slide/14b-QueueStackApps.html#/13]

https://odin.cse.buffalo.edu/teaching/cse-250/2022fa/slide/14b-QueueStackApps.html#/13

Network Packets

Router: 1gb/s internal network, 100mb/s external
e 1 gb/s sent to the router, but only 100mb/s can leave.
e How do we handle this?

Queues
e Enqueue data packets in the order they are received.

e When there is available outgoing bandwidth, dequeue and send.

Avoiding Queueing Delays
e Limit size of queue; Packets that don't fit are dropped

TCP: blocked packets are retried UDP: application deals with dropped packets

O is the start, X is the objective
e There may be multiple paths
e Generally, we want the shortest

Approach 1: Take the first available route in one direction
e Right, Down, Left, or Up
e Down, Right, Up, or Left

How do you know which one is best?

Is there anything wrong with this algorithm?

Priority order doesn't guarantee exploring the entire maze

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps
from start to end.

How do we define the steps function?

How many steps are required for the squares right next to X?

How many steps are required for the squares right next to X?

How many steps are required for the squares right next to X?

And the squares next to those?

So what is the number of steps from O to X?

So what is the number of steps from O to X?

4 (min of neighbors + 1)

Does this solution remind you of anything?

Does this solution remind you of anything?

Recursion!

/

0 if pos = dest
steps(pos,dest) = ¢ oo if is_filled(pos)

|1 +min_adjacent(pos,dest) otherwise

where...

(steps(moveRight(pos),dest)
(moveDown(pos),dest)
(moveLeft(pos),dest)

| steps(moveUp(pos), dest)

steps
min_adjacent(pos, dest) = min < P
steps

steps(pos, dest):

if pos == dest then return ©

elif is filled(pos) then return

else return 1 + min of
steps(moveRight(pos, dest))
steps(moveDown(pos, dest))
steps(movelLeft(pos, dest))
steps(moveUp(pos, dest))

Problem: Infinite loop!

Problem: Infinite loop!

Insight: A path with a loop in it can't be shorter than one without the loop

steps(pos, dest):
if pos == dest then return ©
elif is visited(pos) then return «
elif is filled(pos) then return «
else
Mark pos as visited
return 1 + min of all 4 steps

Problem: The first time you visit a node may be from a longer path!

Problem: The first time you visit a node may be from a longer path!

Insight: Unmark nodes as you leave them

steps(pos, dest):
if pos == dest then return ©
elif is visited(pos) then return «
elif is filled(pos) then return «
else
Mark pos as visited
min = 1 + min of all 4 steps
Mark pos as unvisited
return min

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps
from start to end.

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps
from startto end. v/

Formalizing Maze-Solving

Inputs:

e The map: an n x m grid of squares which are either filled or empty
e The O is at position start
e The Xis at position dest

Goal: Compute steps(start, dest),the minimum number of steps
from startto end. v/

What path did we take?

Idea: Keep track of the nodes marked visited...that's our path!

Mazes: Now with...some data structure?

steps(pos, dest, visited):
if pos == dest then return visited.copy()
elif pos € visited then return no_path
elif is filled(pos) then return no path
else
visited.append(pos)
bestPath = 1 + min of all 4 steps
visited.removelLast()
return bestPath

Mazes: Now with...some data structure?

steps(pos, dest, visited):
if pos == dest then return visited.copy()
elif pos € visited then return no_path
elif is filled(pos) then return no path

else What could this data

visited.append(pos) - structure be??
bestPath = 1 + min of all eps

visited.removelLast()
return bestPath

Mazes: Now with...Stacks!

steps(pos, dest, visited):

if pos == dest then return visited.copy()

elif pos € visited then return no_path

elif is filled(pos) then return no path

else A stack!
visited.push(pos)
bestPath = 1 + min of all 4 steps
visited.pop()
return bestPath

Thought Experiment: Can we do something similar with queues?

