
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 17
Graph Exploration

Textbook Ch. 15.3

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Edge List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(m)
● vertex.incidentEdges: O(m)
● vertex.edgeTo: O(m)
● Space Used: O(n) + O(m)

Adjacency List Summary

● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.incidentEdges: O(deg(vertex))
● vertex.edgeTo: O(deg(vertex))
● Space Used: O(n) + O(m)

Adjacency Matrix Summary

● addEdge, removeEdge: O(1)
● addVertex, removeVertex: O(n2)
● vertex.incidentEdges: O(n)
● vertex.edgeTo: O(1)
● Space Used: O(n2)

So…what do we do with our graphs?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

Connectivity Problems

Given graph G:

● Is vertex u adjacent to vertex v?
● Is vertex u connected to vertex v via some path?
● Which vertices are connected to vertex v?
● What is the shortest path from vertex u to vertex v?

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Subgraph of G

A few more definitions

A subgraph, S, of a graph G is a graph where:
S's vertices are a subset of G's vertices
S's edges are a subset of G's edges

A spanning subgraph of G…
Is a subgraph of G
Contains all of G's vertices

Spanning Subgraph of G

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

A few more definitions

A graph is connected…
If there is a path between every pair of vertices

A connected component of G…
Is a maximal connected subgraph of G
● "maximal" means you can't add a new

vertex without breaking the property
● Any subset of G's edges that connect the

subgraph are fine

Connected graph

Disconnected graph

2 connected
components

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A free tree is an undirected graph T such that…
There is exactly one simple path between any two nodes
● T is connected
● T has no cycles

A rooted tree is a directed graph T such that…
One vertex of T is the root
There is exactly one simple path from the root to every other vertex in the graph

A (free/rooted) forest is a graph F such that…
Every connected component is a tree

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

A Spanning Tree of G

Graph G

A few more definitions

A spanning tree of a connected graph…
…Is a spanning subgraph that is a tree
…It is not unique unless the graph is a tree

Graph G

A Spanning Tree of G Another Spanning Tree of G

Now back to the question…Connectivity

How could we represent our maze as a graph?

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

Back to Mazes

O 1 2 3 4

1 ∞ ∞ ∞ 5

2 ∞ X ∞ 6

4 5 6 9 8

3 ∞ 7 ∞ 7

O

X

How could we represent our maze as a graph?

Recall

Searching the maze with a stack
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Recall

Searching the maze with a stack (Depth-First Search)
We try every path, one at a time, following it as far as we can
…then backtrack and try another

Searching with a queue?
TBD…

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

Depth-First Search

Primary Goals

● Visit every vertex in graph G = (V,E)
● Construct a spanning tree for every connected component

○ Side Effect: Compute connected components
○ Side Effect: Compute a path between all connected vertices
○ Side Effect: Determine if the graph is connected
○ Side Effect: Identify cycles

● Complete in time O(|V| + |E|)

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

Depth-First Search

DFS
Input: Graph G = (V,E)
Output: Label every edge as:
● Spanning Edge: Part of the spanning tree
● Back Edge: Part of a cycle

DFSOne
Input: Graph G = (V,E), start vertex v ∈ V
Output: Label every edge in v's connected component

Depth-First Search

Depth-First Search

✓

Depth-First Search

✓

Depth-First Search

✓

✓

Depth-First Search

✓

✓

Depth-First Search

✓

✓

✓

Depth-First Search

✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

Depth-First Search

✓ ✓

✓

✓

✓

DFS

object VertexLabel extends Enumeration
 { val UNEXPLORED, VISITED = Value }

object EdgeLabel extends Enumeration
 { val UNEXPLORED, SPANNING, BACK = Value }

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value]) {
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a
spanning edge, explore that vertex

DFSOne

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)

 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

If the edge is unexplored, explore it

If the other endpoint is unexplored, this is a
spanning edge, explore that vertex

If the other endpoint is already explored, this is
a back edge

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

Detailed Example

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,D) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)
DFSOne(G,E) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)
DFSOne(G,C) (→ B, A, D, E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)
DFSOne(G,B) (→ A, C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,A) (→ B, C, D)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,B)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,C)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,D)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)
DFSOne(G,E)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)
DFS(G)

A

B

C

D
E

Detailed Example

✓ ✓

✓

✓

✓✓

UNEXPLORED

VISITED

UNEXPLORED

SPANNING

BACK

Call Stack (→ edges to list)

A

B

C

D
E

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths

DFS vs Mazes

The DFS algorithm is like our stack-based maze solver
● Mark each grid square with VISITED as we explore it
● Mark each path with SPANNING or BACK
● Only visit each vertex once

○ DFS will not necessarily find the shortest paths

Depth-First Search Complexity

What's the complexity?

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 for(v <- graph.vertices) { v.setLabel(VertexLabel.UNEXPLORED) }
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 for(e <- graph.edges) { e.setLabel(EdgeLabel.UNEXPLORED) }
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 for(v <- graph.vertices) {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 DFSOne(graph, v)
 }
 }
}

Complexity

def DFS(graph: Graph[VertexLabel.Value, EdgeLabel.Value])
{
 /* O(|V|) */
 /* O(|E|) */
 /* O(|V|) times */ {
 if(v.label == VertexLabel.UNEXPLORED){
 /* ??? */
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 v.setLabel(VertexLabel.VISITED)
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 for(e <- v.incident) {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 if(e.label == EdgeLabel.UNEXPLORED){
 val w = e.getOpposite(v)
 if(w.label == VertexLabel.UNEXPLORED){
 e.setLabel(EdgeLabel.SPANNING)
 DFSOne(graph, w)
 } else {
 e.setLabel(EdgeLabel.BACK)
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 DFSOne(graph, w)
 } else {
 /* O(1) */
 }
 }
 }
}

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
}

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Complexity

def DFSOne(graph: Graph[…], v: Graph[…]#Vertex) {
 /* O(1) */
 /* O(deg(v)) times */ {
 /* O(1) */ {
 /* O(1) */
 /* O(1) */ {
 /* O(1) */
 /* ??? */
 } else {
 /* O(1) */
 }
 }
 }
}

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls?

Depth-First Search Complexity

How many times do we call DFSOne on each vertex?

Observation: DFSOne is called on each vertex at most once

If v.label == VISITED, both DFS, and DFSOne skip it

O(|V|) calls to DFSOne

What's the runtime of DFSOne excluding the recursive calls? O(deg(v))

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

What is the sum over all calls to DFSOne?

Depth-First Search Complexity

In summary…

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

Depth-First Search Complexity

In summary…

1. Mark the vertices UNVISITED O(|V|)
2. Mark the edges UNVISITED O(|E|)
3. DFS vertex loop O(|V|)
4. All calls to DFSOne O(|E|)

 O(|V| + |E|)

