CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

Day 20

Orderings and Priority Queues

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Examples

How might we order the following?

(B,10), (D,3), (E,40)

"A+","C", "B-"

Taco Tuesday, Fish Friday, Meatless Monday
Buffalo Bills, Denver Broncos, Baltimore Ravens
Aardvark, Baboon, Capybara, Donkey, Echidna

Ordering

An ordering (over type A), (A, <):
e A set of things of type A
e A "relation” or comparator, s,
that relates two things in the
set

Examples

5<30=<999
Numerical order

(E,40) = (B,10) = (D,3)
Reverse-numerical order on the 2nd field

C+sB-=sBsB+sA-s<A
Letter grades

AA<AM=BZ=<CA=CD
Compare first then 2nd, 3rd...(Lexical order)

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team B

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

Team B=Team C
Team C won its match against Team B

Team C < Team A
Team A won its match against Team B

Is this an ordering??

Ordering Properties

Team As<sTeamB
Team B won its match against Team A

TeamBsTeamC A
Team C won its match against Team B

Team C < Team A
Team A won its match against Team B

O
v
ve

Is this an ordering??

Ordering Properties

Team A<Team B
Team B won its match against Team A

TeamB=TeamC A
Team C won its match against Team B No
Team C < Team A Transitivity!

Team A won its match against Team B =

Is this an ordering?? NO!

Ordering Properties

An ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz

Another Example

Define an ordering over CSE Courses:
Course 1 = Course 2 iff Course 1 is a prereq of Course 2

CSE115=sCSE 116
CSE 116 = CSE 250
CSE 115 = CSE 191
CSE 191 = CSE 250

Ordering Properties

CSE115

CSE116 CSE191

\

CSE 250

Ordering Properties

CSE115

CSE'I'I6 — 7 CSE191

\

CSE 250

Ordering Properties

CSE 115 ’// CSE 241

?
e
CSE116 —2?— CSE191 ,

CSE 250

Ordering Properties

?

CSE 115 // CSE 241

?
e
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering?

CSE 250

Ordering Properties

?

CSE 115 // CSE 241

?
o
CSE 116 —?— CSE191 ,
\ // Is this a valid ordering? YES

CSE 250

(Partial) Ordering Properties

A partial ordering must be...

Reflexive
XS X

Antisymmetric
Ifxsyandysxthenx=y

Transitive
fxsyandyszthenxsz

(Total) Ordering Properties

An total ordering must be...

Reflexive
X<X

Antisymmetric
fxsyandysxthenx=y

Transitive
fx<yandyszthenxsz

Complete
Eitherxsyorysxforanyxy € A

Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisno yin A, where x <
y

The least element is an element x € A s.t. thereisno yin A, wherey < x

Some Other Definitions

For an ordering (A, <)

The greatest element is an element x € A s.t. thereisno yin A, where x <
y

The least element is an element x € A s.t. thereisno yin A, wherey < x

A partial ordering may not have a unique greatest/least element

Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c)....,(b,b).....(z,2)}

Describing an Ordering

< can be described explicitly, by a set of tuples:

{(a,a),(a,b),(a,c)....,(b,b).....(z,2)}
If (x,y) is in the set,thenx =<y

Describing an Ordering

< can be described by a mathematical rule:

{xy)Ix,y€Z 3aczZ'U{0}:x+a=y}

Describing an Ordering

< can be described by a mathematical rule:
{xy)Ix,y€Z 3acz'U{0}:x+a=y}

x sy iff x,y are integers and there is a non-negative integer a s.t. x+a=y

Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words

Multiple Orderings

Multiple Orderings can be defined for the same set

e RottenTomatoes vs Metacritic vs Box Office Gross
e 'Best Movie" first vs "Worst Movie" first

e Rank by number of swear words

We use subscripts to separate orderings (s, s, s, ...)

Transformations

We can transform orderings:

Transformations

We can transform orderings:

Reverse: If x =, y then definey =_x

Transformations

We can transform orderings:
Reverse: If x =, y then definey =_x

Lexical: Given S, S, S5

o ifxs ythenxs y

o elseifx=yandxs,ythenxs y
e elseifx=,yandxs,ythenxs y
L

Examples of Lexical Ordering

Names: First letter, then second letter, then third...
Movies: Average of reviews, then number of reviews...
Tuples: First field, then second field, then third...

Sports Teams: Games won, points scored, speed of victory...

Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S 4q0 ¥ Iff weight(x) = weight(y)

X S, gen Y Iff NAMe(X) s, name(y)

Ordering Over Keys

< can be described as an ordering over a key derived from the element:
X S 4qqe ¥ Iff Weight(x) = weight(y)
X Sstudent y iff name(x) s X name(y)

“Le

We say that weight/name are keys

Topological Sort

A Topological Sort of partial order (A, <) is any total order (A,s,) that
‘agrees” with (A, s.):

For any two elements x,y in A:
ifxs ythenxs,y
ifys, xthenys, x
Otherwise, either x =, y ory <, x

Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE115,CSE 191, CSE 116, CSE 250, CSE 241

Topological Sort

The following are all topological sorts over our partial order from earlier:

e CSE 115, CSE 116, CSE 191, CSE 241, CSE 250
e (CSE 241,CSE115,CSE 116, CSE 191, CSE 250
e CSE115,CSE 191, CSE 116, CSE 250, CSE 241

(In this case, the partial ordering is a schedule requirement, and each
topological sort is a possible schedule)

And now for an ordering-based ADT...

A New ADT...PriorityQueue

PriorityQueue[A <:0rdering]

enqueue (v: A): Unit
Insert value v into the priority queue

dequeue: A
Remove the greatest element in the priority queue

head: A
Peek at the greatest element in the priority queue

How do we store

the following—

enqueue(5)

How do we store

the following—

enqueue(5)
enqueue(9)

How do we store

the following—

enqueue(5)
enqueue(9)
enqueue(2)

How do we store

the following—

How do we store

the following—

enqueue(5)
enqueue(9)
enqueue(2)
enqueue(7)

enqueue(5)
enqueue(9)
enqueue(2)
enqueue(7)
head // Should be 9
HOW dO we store dequeue // should be 9

the following—

enqueue(5)

enqueue(9)

enqueue(2)

enqueue(7)

head // Should be 9
HOW dO we store dequeue // should be 9

o size // should be 3
the f0||0WIng—> head // should be 7

enqueue(5)

enqueue(9)
enqueue(2)
enqueue(7)
head // Should be 9
HOW dO we Store dequeue // should be 9
. size // should be 3
the following— head // should be 7

dequeue // 7
dequeue // 5
dequeue // 2

How do we store
the following—

enqueue(5)
enqueue(9)
enqueue(2)
enqueue(7)
head

dequeue

size
head
dequeue
dequeue
dequeue
isEmpty

// Should be
// should be
// should be
// should be
// 7
// 5
// 2
// should be

How do we store
the following—

Insertion Order?

59,72

enqueue(5)
enqueue(9)
enqueue(2)
enqueue(7)
head

dequeue

size
head
dequeue
dequeue
dequeue
isEmpty

// Should be
// should be
// should be
// should be
// 7
// 5
// 2
// should be

enqueue(5)

enqueue(9)
enqueue(2)
enqueue(7)
head // Should be
How do we store dequeue // should be
tfl f II o size // should be
€ roliowing— head // should be
Insertion Order? 59,72 dequeue // 7
Sorted Order? 9,7,5,2 dequeue // 5

dequeue // 2
isEmpty // should be

How do we store
the following—

Insertion Order? 529,72
Sorted Order? 9,752
Reverse Sorted Order? 2,5 7,9

enqueue(5)
enqueue(9)
enqueue(2)
enqueue(7)
head

dequeue

size
head
dequeue
dequeue
dequeue
isEmpty

// Should be
// should be
// should be
// should be
// 7
// 5
// 2
// should be

Priority Queues

Two mentalities...
Lazy: Keep everything a mess

Proactive: Keep everything organized

Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized

Priority Queues

Two mentalities...
Lazy: Keep everything a mess ("Selection Sort")

Proactive: Keep everything organized ("Insertion Sort")

Lazy Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Append t to the end of the linked list.

dequeue/head : A
Traverse the list to find the largest value.

Lazy Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Append t to the end of the linked list. O(1)

dequeue/head : A
Traverse the list to find the largest value.

Lazy Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Append t to the end of the linked list. O(1)

dequeue/head : A
Traverse the list to find the largest value. O(n)

Sorting with Our Priority Queue

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{

val out = new Array[A] (items.size)
for(item <- items){ pqueue.enqueue (item) }

i = out.size - 1

while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

Sorting with Our Priority Queue

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{

val out = new Array[A] (items.size)
for (item <- items) { pqueue.enqueue (item) } <« Add all items to pqueue

i = out.size - 1

while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

Sorting with Our Priority Queue

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{

val out = new Array[A] (items.size)
for (item <- items) { pqueue.enqueue (item) } <« Add all items to pqueue

i = out.size -1
while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out.toSeq A Pull all items out of pqueue

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()

Selection Sort

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()

Step 1 (4,8,2,5,3,9) (7)

Selection Sort

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)

Selection Sort

Selection Sort

Seq/Buffer PQueue

(7,4,8,2,5,3,9)

(4,8,2,5,3,9)

(8,2,5,3,9) (7,4)

(7,4,8,2,5,3,9)

Selection Sort

Input
Step 1

Step 2

Step n

Stepn+ 1

Seq/Buffer
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

L. ... 9]

PQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,2,5,3)

Selection Sort

Input
Step 1

Step 2

Step n
Stepn+ 1

Stepn+2

Seq/Buffer
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9)

PQueue

()
(7)
(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,2,5,3)

(7,4,2,5,3,9)

Selection Sort

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2

Stepn+3

Seq/Buffer PQueue
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9) (7,4)

(7,4,8,2,5,3,9)

(7,4,8,2,5,3)

(7,4,2,5,3,9)

(4,2,5,3,9)

Selection Sort

Seq/Buffer
Input (7,4,8,2,5,3,9)
Step 1 (4,8,2,5,3,9)

Step 2 (8,2,5,3,9)

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4 [.__578.9]

PQueue

(7.,4)

(7,4,8,2,5,3,9)

(7,4,8,2,5,3)

(7,4,2,5,3,9)

(4,2,5,3,9)

4,2,3,9)

Selection Sort

Input
Step 1

Step 2

Step n
Stepn+ 1
Stepn+2
Stepn+3

Stepn +4

Step 2n

Seq/Buffer PQueue
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)

(8,2,5,3,9) (7,4)

(754181255’359)
(7’458121513)
(7’4521513,9)

(4,2,5,3,9)

L, .,578,9] (4,2,3,9)

[21314,5;7,8,9]

Selection Sort

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{
val out = new Array[A] (items.size)
for(item <- items){ pqueue.enqueue (item) }
i = out.size -1
while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

What is the complexity?

Selection Sort

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{
val out = new Array[A] (items.size)
for(item <- items){ pqueue.enqueue (item) }
i = out.size -1
while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

What is the complexity? O(n?)

Proactive Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Insert t in reverse sorted order.

dequeue/head : A
Refer to the first item in the list.

Proactive Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Insert t in reverse sorted order. O(n)

dequeue/head : A
Refer to the first item in the list.

Proactive Priority Queue

Base Data Structure: Linked List

enqueue (v: A): Unit
Insert t in reverse sorted order. O(n)

dequeue/head : A
Refer to the first item in the list. 0(1)

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()

Insertion Sort

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()

Step 1 (4,8,2,5,3,9) (7)

Insertion Sort

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)

Insertion Sort

Insertion Sort

Seq/Buffer

(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(8,2,5,3,9)

(2,5,3,9)

PQueue

Insertion Sort

Seq/Buffer

(7,4,8,2,5,3,9)

(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)

(5,3,9)

PQueue

()
(7)

Insertion Sort

Seq/Buffer
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)
(2,5,3,9)

(5,3,9)

Lo]

PQueue

()
(7)
(7.,4)
(8,7,4)

(8,7,4.2)

(9,8,7,5,4,3,2)

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9) ()
Step 1 (4,8,2,5,3,9) (7)
Step 2 (8,2,5,3,9) (7,4)
Step 3 (2,5,3,9) (8,7,4)

Insertion Sort Step 4 5.39) 8742)

Step n Lo 1 (987,543.2)

Stepn+2 [9 (8,7,5,4,32)

Insertion Sort

Seq/Buffer PQueue
(7,4,8,2,5,3,9)
(4,8,2,5,3,9)
(8,2,5,3,9)

(2,5,3,9)

(9,8,7,5,4,3,2)

Stepn+2 (8,7,5,4,3,2)

Stepn+3 (7,5,4,3,2)

Seq/Buffer PQueue

Input (7,4,8,2,5,3,9)
Step 1 (4,8,2,5,3,9)
Step 2 (8,2,5,3,9)
Step 3 (2,5,3,9)

Insertion Sort Step 4

Step n (9,8,7,5,4,3,2)

Stepn+2 (8,7,5,4,3,2)

Stepn+3 (7,5,4,3,2)

Step 2n [2,3,4,5,7,8,9]

Selection Sort

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{
val out = new Array[A] (items.size)
for(item <- items){ pqueue.enqueue (item) }
i = out.size -1
while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

What is the complexity?

Selection Sort

def pqueueSort[A] (items: Seq[A], pqueue: PriorityQueue[A]): Seq[A] =
{
val out = new Array[A] (items.size)
for(item <- items){ pqueue.enqueue (item) }
i = out.size -1
while (!pqueue.isEmpty) { buffer (i) = pqueue.dequeue; i-- }
return out. toSeq

What is the complexity? O(n?)

Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)

Priority Queues

Operation Lazy Proactive
enqueue O(1) O(n)
dequeue O(n) O(1)

head O(n) O(1)

Can we do better?

