
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 24
Heaps, Sets, Bags, and Ordered Trees

Textbook Ch. 16, 18

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Announcements

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue

Proactive - Slow Enqueue, Fast Dequeue

??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

Binary Heaps

Organize our priority queue as a directed tree

Directed: A directed edge from a to b means that a ≥ b

Binary: Max out-degree of 2 (easy to reason about)

Complete: Every "level" except the last is full (from left to right)

Balanced: TBD (basically, all leaves are roughly at the same level)

This makes it easy to encode into an array

Valid Max Heaps

31

20 4

105 2 1

5

5 4

22 2 1

1

10

9 8

67 5

Invalid Max Heaps

99

20 50

5 10 30

8

7 6

45 3

2

10

6 7

98 5

Need to fill from left to right Need complete levels Children must be less than or
equal to parents

Heaps

What is the depth of a binary heap containing n items?

The Heap ADT

enqueue(elem: A): Unit [AKA pushHeap]
Place an item into the heap

dequeue: A [AKA popHeap]
Remove and return the maximal element from the heap

head: A
Peek at the maximal element in the heap

length: Int
The number of elements in the heap

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current != root and current > parent

a. Swap current with parent
b. Repeat with current ← parent

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

Heap.enqueue

10

5 4

22 2 1

1

What if we enqueue 6?

Place in the next available
spot

6

Heap.enqueue

10

5 4

26 2 1

1

What if we enqueue 6?

Swap with parent if it is
bigger than the parent

2

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Continue swapping
upwards…

2

Heap.enqueue

10

6 4

25 2 1

1

What if we enqueue 6?

Stop swapping when we
are no longer bigger than
our parent

2

✓

Heap.dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current ← root
2. While current has a child > current

a. Swap current with its largest child
b. Repeat with current ← child

Heap.dequeue

10

6 4

25 2 1

1

What if we call dequeue?

2

Heap.dequeue 6 4

25 2 1

1

What if we call dequeue?

Remove and return the
root

2

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Make the last item the
new root

Heap.dequeue

2

6 4

25 2 1

1

What if we call dequeue?

Check for our largest child

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

If the largest child is
bigger than us, swap

Heap.dequeue

6

2 4

25 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Continue swapping down
the tree as necessary…

Heap.dequeue

6

5 4

22 2 1

1

What if we call dequeue?

Stop swapping when our
children are no longer
bigger ✓

Storing heaps

Notice that:
1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?

Idea: Use an ArrayBuffer

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2

Storing Heaps
How can we store this
heap in an array buffer?

10

6 4

25 2 1

1 2

10 6 4 5 2 2 1 1 2 4

4

Enqueue always inserts at the
arrays end (then we fixup)

Runtime Analysis

enqueue
● Append to ArrayBuffer: amortized O(1) (worst-case O(n))
● fixUp: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: amortized O(log(n)) (worst-case O(n))

dequeue
● Remove end of ArrayBuffer: O(1)
● fixDown: O(log(n)) fixes, each one costs O(1) = O(log(n))
● Total: worst-case O(log(n))

Priority Queues

Operation Lazy Proactive Heap

enqueue O(1) O(n) O(log(n))

dequeue O(n) O(1) O(log(n))

head O(n) O(1) O(1)

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4 8

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 4 8

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2 5

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 4 7 2 5

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3 9

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3 9

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 9 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 9 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

9 5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

9 5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 8 2 4 3 7

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 8 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 8 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

8 5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 7 2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 5 7 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 5 7 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7 5 3 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 3 2 4

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 5 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 5 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

5 4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 4 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

4 2 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9
?

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2 3

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

3 2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

2

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

7, 4, 8, 2, 5, 3, 9

2, 3, 4, 5, 7, 8, 9

Heap Sort

Heap Sort

Enqueue element i: O(log(i))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Heap Sort

Enqueue element i: O(log(i))

Dequeue element i: O(log(n - i)))

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Heap.update

6

5 4

22 2 1

1

What if we change the
value of the 5 node to 0?

Heap.update

6

0 4

22 2 1

1

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

20 2 1

1

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

21 2 1

0

We now have to fixUp or
fixDown based on the
new value

Heap.update

6

2 4

21 2 1

0

We now have to fixUp or
fixDown based on the
new value

✓

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Updating Heap Elements

What if we want to update a value in our Heap?

After update we can just call fixUp or fixDown based on the new value

Can we apply this idea to an entire array?

Heapify

Input: Array

Output: Array re-ordered to be a heap

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all n elements in the array

Given the cost of fixUp and fixDown what do we expect the complexity
Heapify will be?

Heapify

6

4 7

108 2 1

Given an arbitrary array
(show as a tree here) turn
it into a heap

Heapify

6

4 7

108 2 1

Start at the lowest level,
and call fixDown on
each node (0 swaps per
node)

Heapify

6

4 7

108 2 1

Do the same at the next
lowest level (at most one
swap per node)

Heapify

6

10 7

48 2 1

Do the same at the next
lowest level (at most one
swap per node)

✓

Heapify

6

10 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

6 7

48 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

10

8 7

46 2 1

Continue upwards (now at
most 2 swaps per node)

Heapify

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

Heapify

At level log(n): Call fixDown on all n/2 nodes at this level (max 0 swaps each)

At level log(n)-1: Call fixDown on all n/4 nodes at this level (max 1 swaps each)

At level log(n)-2: Call fixDown on all n/8 nodes at this level (max 2 swaps each)

…

At level 1: Call fixDown on all 1 nodes at this level (max log(n) swaps each)

Heapify
Sum the number of swaps
required by each level

Heapify
Pull out the n as a
constant and distribute
multiplication

Heapify
Focus on the dominant
term only

Heapify
Change log(n) to infinity
(can only increase
complexity class if
anything)

Heapify
We can now treat the sum
as a constant

This is known to
converge to a constant

Heapify
Therefore we can heapify
an array of size n in O(n)

Heapify
Therefore we can heapify
an array of size n in O(n)

(but heap sort still
requires n log(n) due to
dequeue costs)

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item)

Sets

A Set is an unordered collection of unique elements.

(order doesn't matter, and at most one copy of each item key)

The mutable.Set[T] ADT

add(element: T): Unit
Store one copy of element if not already present

apply(element: T): Boolean
Return true if element is present in the set

remove(element: T): Boolean
Remove element if present, or return false if not

Bags

A Bag is an unordered collection of non-unique elements.

(order doesn't matter, and multiple copies with the same key is OK)

The mutable.Bag[T] ADT

add(element: T): Unit
Register the presence of a new (copy of) element

apply(element: T): Boolean
Return the number of copies of element in the bag

remove(element: T): Boolean
Remove one copy of element if present, or return false if not

Collection ADTs

Propery Seq Set Bag

Explicit Order ✓

Enforced Uniqueness ✓

Iterable ✓ ✓ ✓

(Rooted) Trees

(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)

Parent of node X - A node with an out-edge to X (max 1 parent per node)

Child of node X - A node with an in-edge from X

Leaf - A node with no children

Depth of node X - The number of edges in the path from the root to X

Height of node X - The number of edges in the path from X to the deepest leaf

(Even More) Tree Terminology

Level of a node - Depth of the node + 1

Size of a tree (n) - The number of nodes in the tree

Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf

(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children

Complete Binary Tree - All leaves are in the deepest two levels

Full Binary Tree - All leaves are at the deepest level, therefore every vertex
has exactly 0 or 2 children, and d = log(n)

Quick Scala Tips

We've seen how we can use options for objects that may not exist…

class TreeNode[T](
 var _value: T,
 var _left: Option[TreeNode[T]]
 var _right: Option[TreeNode[T]]
)

class Tree[T] {
 var root: Option[TreeNode[T]] = None // empty tree
}

Quick Scala Tips

But we can also use Traits and case classes…

trait Tree[+T]

case class TreeNode[T](
 value: T,
 left: Tree[T],
 right: Tree[T]
) extends Tree[T]

case object EmptyTree extends Tree[Nothing]

Quick Scala Tips

But we can also use Traits and case classes…

trait Tree[+T]

case class TreeNode[T](
 value: T,
 left: Tree[T],
 right: Tree[T]
) extends Tree[T]

case object EmptyTree extends Tree[Nothing]

TreeNode and EmptyTree are
two cases of Tree

Case Classes/Objects

Case Classes/Objects have two important features:

1. Inline Constructors (no new):
TreeNode(10,EmptyTree,EmptyTree)

2. Match deconstructors:
foo match { case TreeNode(v, l, r) => … }

Case Classes/Objects

def printTree[T](root: ImmutableTree[T], indent: Int) = {
 root match {
 case TreeNode(v, left, right) =>
 print((“ “ * indent) + v)
 printTree(left, indent + 2)
 printTree(right, indent + 2)

 case EmptyTree =>
 /* Do Nothing */
 }
}

Case Classes/Objects

def printTree[T](root: ImmutableTree[T], indent: Int) = {
 root match {
 case TreeNode(v, left, right) =>
 print((“ “ * indent) + v)
 printTree(left, indent + 2)
 printTree(right, indent + 2)

 case EmptyTree =>
 /* Do Nothing */
 }
}

If root is a TreeNode with value v, and
subtrees left and right, print v, then
call printTree on left and right

Case Classes/Objects

def printTree[T](root: ImmutableTree[T], indent: Int) = {
 root match {
 case TreeNode(v, left, right) =>
 print((“ “ * indent) + v)
 printTree(left, indent + 2)
 printTree(right, indent + 2)

 case EmptyTree =>
 /* Do Nothing */
 }
}

If root is an EmptyTree then don't do
anything

Computing Tree Height

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

So we can compute height recursively:

Computing Tree Height

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

So we can compute height recursively:

Computing Tree Height

The height of a tree is the height of the root

The children of the root are each roots of the left and right subtrees

So we can compute height recursively:

Computing Tree Height

Case functions correspond nicely to cases in Scaladef height[T](root: Tree[T]): Int = {
 root match {
 case EmptyTree =>
 0

 case TreeNode(v, left, right) =>
 1 + Math.max(height(left), height(right))
}

Computing Tree Height

Case functions correspond nicely to cases in Scaladef height[T](root: Tree[T]): Int = {
 root match {
 case EmptyTree =>
 0

 case TreeNode(v, left, right) =>
 1 + Math.max(height(left), height(right))
}

Case classes have a nice mapping
onto functions with multiple cases

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key
● For every node XR in the right subtree of node X: XR.key > X.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
● No duplicate keys
● For every node XL in the left subtree of node X: XL.key < X.key
● For every node XR in the right subtree of node X: XR.key > X.key

X partitions its children

Finding an Item

Goal: Find an item with key k in a BST rooted at root

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)
3. Is k less than root.value's key? (if yes, search left subtree)

Finding an Item

Goal: Find an item with key k in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root.value have key k? (if yes, done!)
3. Is k less than root.value's key? (if yes, search left subtree)
4. Is k greater than root.value's key? (If yes, search the right subtree)

find

def find[V: Ordering](root: BST[V], target: V): Option[V] =
 root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }

 case EmptyTree =>
 return None
 }

find

What's the complexity?

def find[V: Ordering](root: BST[V], target: V): Option[V] =
 root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }

 case EmptyTree =>
 return None
 }

find

What's the complexity? (how many times do we call find)?

def find[V: Ordering](root: BST[V], target: V): Option[V] =
 root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }

 case EmptyTree =>
 return None
 }

find

What's the complexity? (how many times do we call find)? O(d)

def find[V: Ordering](root: BST[V], target: V): Option[V] =
 root match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)) { return find(left, target) }
 else if(Ordering[V].lt(v, target)){ return find(right, target) }
 else { return Some(v) }

 case EmptyTree =>
 return None
 }

Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

1. Is root empty? (insert here)

Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)

Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)
3. Is k less than root.value's key? (call insert on left subtree)

Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

1. Is root empty? (insert here)
2. Does root.value have key k? (already present! don't insert)
3. Is k less than root.value's key? (call insert on left subtree)
4. Is k greater than root.value's key? (call insert on right subtree)

insert

Codedef insert[V: Ordering](root: BST[V], value: V): BST[V] =
 node match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)){
 return TreeNode(v, insert(left, target), right)
 } else if(Ordering[V].lt(v, target)){
 return TreeNode(v, left, insert(right, target))
 } else {
 return node // already present
 }

 case EmptyTree =>
 return TreeNode(value, EmptyTree, EmptyTree)
 }

insert

Codedef insert[V: Ordering](root: BST[V], value: V): BST[V] =
 node match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)){
 return TreeNode(v, insert(left, target), right)
 } else if(Ordering[V].lt(v, target)){
 return TreeNode(v, left, insert(right, target))
 } else {
 return node // already present
 }

 case EmptyTree =>
 return TreeNode(value, EmptyTree, EmptyTree)
 }

What is the complexity?
(how many calls to insert)?

insert

Codedef insert[V: Ordering](root: BST[V], value: V): BST[V] =
 node match {
 case TreeNode(v, left, right) =>
 if(Ordering[V].lt(target, v)){
 return TreeNode(v, insert(left, target), right)
 } else if(Ordering[V].lt(v, target)){
 return TreeNode(v, left, insert(right, target))
 } else {
 return node // already present
 }

 case EmptyTree =>
 return TreeNode(value, EmptyTree, EmptyTree)
 }

What is the complexity?
(how many calls to insert)? O(d)

Remove

Goal: Remove the item with key k from a BST rooted at root

1. find the iterm
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

We'll look at this in more detail later, but for now…

What's the complexity? O(d)

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies (XL ≤ X instead of <)

Idea 2: Only store one copy of each element, but also store a count

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies (XL ≤ X instead of <)

Idea 2: Only store one copy of each element, but also store a count

Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies (XL ≤ X instead of <)

Idea 2: Only store one copy of each element, but also store a count

BST Operations

Operation Runtime

find O(d)

insert O(d)

remove O(d)

BST Operations

What is the runtime in terms of n? O(n)

Does it need to be that bad?

Operation Runtime

find O(d)

insert O(d)

remove O(d)

BST Operations

What is the runtime in terms of n? O(n)

Does it need to be that bad?

Operation Runtime

find O(d)

insert O(d)

remove O(d)

BST Operations

What is the runtime in terms of n? O(n)

Does it need to be that bad?

Operation Runtime

find O(d)

insert O(d)

remove O(d)

Next time…

Balancing Trees…

