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A Set is an unordered collection of unique elements.
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Themutable.Set[T] ADT

add (element: T): Unit
Store one copy of element if not already present

apply (element: T): Boolean
Return true if element is present in the set

remove (element: T): Boolean
Remove element if present, or return false if not



A Bag is an unordered collection of non-unigue elements.

(order doesn't matter, and multiple copies with the same key is OK)



Themutable.Bag[T] ADT

add (element: T): Unit
Register the presence of a new (copy of) element

apply (element: T): Boolean
Return the number of copies of element in the bag

remove (element: T): Boolean
Remove one copy of element if present, or return false if not



Collection ADTs

Propery Seq Set Bag
Explicit Order 4
Enforced Uniqueness 4
Iterable v v v




(Rooted) Trees



(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)

Parent of node X - A node with an out-edge to X (max 1 parent per node)
Child of node X - A node with an in-edge from X

Leaf - A node with no children

Depth of node X - The number of edges in the path from the root to X

Height of node X - The number of edges in the path from X to the deepest leaf



(Even More) Tree Terminology

Level of a node - Depth of the node + 1
Size of a tree (n) - The number of nodes in the tree

Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf




(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children

Complete Binary Tree - All leaves are in the deepest two levels

Full Binary Tree - All leaves are at the deepest level, therefore every vertex
has exactly 0 or 2 children, and d = log(n)




Computing Tree Height

The height of a tree is the height of the root
The children of the root are each roots of the left and right subtrees
So we can compute height recursively:

h(root) 0 if the tree is empty
root) =
1 + max(h(root.left), h(root.right)) otherwise



Computing Tree Height

def height|[T] (root: Tree[T]): Int
root match {

case EmptyTree =>
0

case TreeNode (v, left, right) =>
1 + Math.max( height(left), height(right) )

if the tree is empty
1 + maz(h(root.left), h(root.right)) otherwise




Computing Tree Height

def height|[T] (root: Tree[T]): Int
root match {

case EmptyTree => Case classes have a nice mapping
0 onto functions with multiple cases

case TreeNode (v, left, right) =>
1 + Math.max( height(left), height(right) )

if the tree is empty
1 + maz(h(root.left), h(root.right)) otherwise




Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.
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Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique
key, and the keys are ordered.

Constraints
e No duplicate keys
e Forevery node X, in the left subtree of node X: X, .key < X.key
e Forevery node X,, in the right subtree of node X: X,.key > X.key

X partitions its children




Finding an Item

Goal: Find an item with key k in a BST rooted at root
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Finding an Item

Goal: Find an item with key k in a BST rooted at root

Is root empty? (if yes, then the item is not here)

Does root.value have key k? (if yes, done!)

Is k less than root.value's key? (if yes, search left subtree)

Is k greater than root.value's key? (If yes, search the right subtree)

ol



find

def find[V: Ordering] (root: BST[V], target: V): Option[V] =
root match {

case TreeNode (v, left, right)
if (Ordering[V].1lt( target, v )) { return find(left, target) }
else if (Ordering[V].1lt( v, target )){ return find(right, target) }
else { return Some (v) }

case EmptyTree =>
return None
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return None

What's the complexity?
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find

def find[V: Ordering] (root: BST[V], target: V): Option[V] =
root match {

case TreeNode (v, left, right) =>
if (Ordering[V].1lt( target, v )) { return find(left, target) }
else if (Ordering[V].1lt( v, target )){ return find(right, target) }
else { return Some (v) }

case EmptyTree =>
return None

What's the complexity? (how many times do we call £ind)? O(d)
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Inserting an Item

Goal: Insert a new tem with key k in a BST rooted at root

Is root empty? (insert here)

Does root.value have key k? (already present! don't insert)

Is k less than root.value's key? (call insert on left subtree)

Is k greater than root.value's key? (call insert on right subtree)

ol



insert

def insert[V: Ordering] (root: BST[V], wvalue: V): BST[V]
node match ({
case TreeNode (v, left, right)
if (Ordering[V].1lt( target, v ) ){
return TreeNode (v, insert(left, target), right)
} else if (Ordering[V].1lt( v, target ) ) {
return TreeNode (v, left, insert(right, target))

} else {
return node

}

case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)




insert

def insert[V: Ordering] (root: BST[V], wvalue: V): BST[V] =
node match ({
case TreeNode (v, left, right)

if (Ordering[V].1lt( target, v ) ){
return TreeNode (v, insert(left, target), right)

} else if (Ordering[V].1lt( v, target ) ) {
return TreeNode (v, left, insert(right, target))

} else {
return node

}

What is the complexity?
(how many calls to insert)?

case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)




insert

def insert[V: Ordering] (root: BST[V], wvalue: V): BST[V] =
node match ({
case TreeNode (v, left, right)

if (Ordering[V].1lt( target, v ) ){
return TreeNode (v, insert(left, target), right)

} else if (Ordering[V].1lt( v, target ) ) {
return TreeNode (v, left, insert(right, target))

} else {
return node

}

What is the complexity?
(how many calls to insert)? O(d)

case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)




Goal: Remove the item with key k from a BST rooted at root

1. findtheitem
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

We'll look at this in more detail later, but for now...

What's the complexity? O(d)



Sets and Bags

So we could use this specification of a BST to implement a Set

What about bags? How could we change our BST to implement a Bag?
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Sets and Bags

So we could use this specification of a BST to implement a Set
What about bags? How could we change our BST to implement a Bag?
Idea 1: Allow multiple copies (X, < X instead of <)

Idea 2: Only store one copy of each element, but also store a count



BST Operations

Operation Runtime
find O(d)
insert O(d)
remove O(d)
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BST Operations

Operation Runtime
find O(d)
insert O(d)
remove O(d)

What is the runtime in terms of n? O(n)

Does it need to be that bad? ...hold that thought



Tree Traversals

Goal: Visit every element of a tree (in linear time?)

Pre-Order (top-down)
Visit the root, then the 1eft subtree, then the right subtree

In-Order
Visit the 1eft subtree, then the root, then the right subtree

Post-Order (bottom-up)
Visit the 1eft subtree, then the right subtree, then the root



Tree Traversal: In-Order

def inorderVisit[T](root: ImmutableTree[T], visit: ImmutableTree[T] => Unit) = {
root match {
case TreeNode(v, left, right) =>

inorderVisit(left, visit)

visit(v)

inorderVisit(right, visit)

case EmptyTree =>




In-Order
Traversal on a
BST
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In-Order
Traversal on a
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inorderVisit(6)
inorderVisit(4)
inorderVisit(1)

inorderVisit(empty)




In-Order
Traversal on a
BST

inorderVisit(6)
inorderVisit(4)
inorderVisit(1)

visit(1)

Output: 1
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In-Order
Traversal on a
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inorderVisit(6)
inorderVisit(10)
inorderVisit(7)

visit(7)




In-Order
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In-Order
Traversal on a
BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)

visit(8)




In-Order
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In-Order
Traversal on a
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inorderVisit(6)
inorderVisit(10)
inorderVisit(7)
inorderVisit(8)

visit(9)




In-Order
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inorderVisit(6)
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In-Order
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BST

inorderVisit(6)
inorderVisit(10)
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In-Order
Traversal on a
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In-Order
Traversal on a
BST

inorderVisit(6)
inorderVisit(10)

visit(10)




In-Order
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In-Order
Traversal on a
BST

inorderVisit(6)
inorderVisit(10)
inorderVisit(11)

visit(11)




In-Order
Traversal on a
BST

inorderVisit(6)

inorderVisit(10)
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In-Order
Traversal on a
BST




Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

val toVisit = mutable.Stack[ImmutableTree[T]]
pushLeft(root)

def pushLeft(node: ImmutableTree[T]): Unit =
node match {
case EmptyTree => ()
case t: ImmutableTree =>
toVisit.push(t)
pushLeft(t.left)




Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

val toVisit = mutable.Stack[ImmutableTree[T]]
pushLeft(root) R

def pushLeft(node: ImmutableTree[T]): Unit = Initialize our iterator by recursively

node match { - pushing the left trees (we know the
case EmptyTree => () FIRST element in an in-order
Case & Inmutablerrae=s traversal is the left-most
toVisit.push(t)
pushLeft(t.left) /




Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

mutable.Stack[ImmutableTree[T]]
\

val toVisit
pushLeft(root)

def pushLeft(node: ImmutableTree[T]): Unit
node match {
case EmptyTree => ()
ImmutableTree =>

case t:

Initialize our iterator by recursively
> pushing the left trees (we know the
FIRST element in an in-order
traversal is the left-most

toVisit.push(t)

pushLeft(t.left) /

AN

This pushes nodes onto our toVisit Stack, followed by their left trees (LIFO!)




Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

def isEmpty = toVisit.isEmpty

def next: T = {
val nextNode = toVisit.pop
pushLeft(nextNode.right)
return nextNode.value




Tree Traversal: In-Order Iterator

class ImmutableTreeIterator[T](root: ImmutableTree[T]) {

def isEmpty = toVisit.isEmpty

def next: T = {

val nextNode = toVisit.pop

pushLeft(nextNode.right) next pops the next node from our stack, and

return nextNode.value pushes it's right subtree, then returns it




In-Order
Traversal with
an lterator




In-Order
Traversal with
an lterator

When we create the
iterator, the toVisit
stack is initialized




In-Order
Traversal with
an lterator

next pops the stack (1),
and calls pushLeft on
the right subtree of 1

Output: 1
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In-Order
Traversal with
an lterator

next pops the stack (11)
and pushes the right
subtree (nothing)




In-Order
Traversal with
an lterator

Our toVisit stack s
empty, so isEmpty will
now be true
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Complexity

def next: T = {
val nextNode = toVisit.pop
pushLeft(nextNode.right)
return nextNode.value

What is our worst-case runtime to call next? O(d)

(we may have to push as many as d nodes onto the stack)
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Complexity

What is the worst-case complexity to visit ALL n nodes?
Each node is at the top of the stack exactly once:

e Onepush 0(1)
e Onepop O(1)

Total: O(n)



Balancing Trees



BST Operations

Operation Runtime
find O(d)
insert O(d)
remove O(d)

What is the runtime in terms of n? O(n)

log(n) sd =<n



Tree Depth vs Size

If height(left) = height(right) If height(left) € height(right)

d = O(log(n))
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Balanced Trees

Balanced Trees are good: Faster find, insert, remove
What do we mean by balanced? |height(left) - height(right)| < 1

How do we keep a tree balanced?



Balanced Trees - Two Approaches

Option 1 Option 2
Keep left/right subtrees within Keep leaves at some minimum
+/-1 of each other in height depth (d/2)
(add a field to track amount of (Add a color to each node marking it

"imbalance") as "red" or "black")



Ok...but how do we enforce
this...?



Rebalancing Trees (rotations)
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Rebalancing Trees (rotations)

A became B's left child
B's left child became A's right child
Is ordering maintained? Yes!

Complexity? 0(1)

Rotate(A, B)



Rebalancing
Trees




Rebalancing
LGS

Rotate(1,2)




Rebalancing
LGS

Rotate(2,3)




Rebalancing
LGS

Rotate(3,4)




Rebalancing
LGS

Rotate(3,2)




Rebalancing
LGS

Rotate(5,6)




Next Time...

Enforcing Balance with AVL Trees...



