CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

Day 29

Hash Functions


mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Themutable.Set[T] ADT

add (element: T): Unit
Store one copy of element if not already present

apply (element: T): Boolean
Return true if element is present in the set

remove (element: T): Boolean
Remove element if present, or return false if not



Themutable.Set[T] ADT and Maps

add (element: T): Unit
Store one copy of element if not already present

apply (element: T): Boolean
Return true if element is present in the set

remove (element: T): Boolean
Remove element if present, or return false if not

Maps are like Sets, but where T is a 2-tuple: (key, value)

The identity of the element is determined by key




TheMap[K,V] ADT

add (key: K, value: V): Unit // RAKA put(...)
Insert (key, wvalue) into the map. If key already exists, replace it.

apply (key: K): V // BAKA get(...)
Return the value corresponding to key

remove (key: K): V
Remove the element associated with key and return the value



Map Implementations

Map[K,V] as a Sorted Sequence

¢ apply

e add

® remove

Map [K,V] as a balanced Binary Search Tree
¢ apply

e add

® remove



Map Implementations

Map[K,V] as a Sorted Sequence
e apply O(log(n)) for Array, O(n) for Linked List
e add O(n)
e removeO(n)
Map [K,V] as a balanced Binary Search Tree
¢ apply
e add
® remove



Map Implementations

Map[K,V] as a Sorted Sequence
e apply O(log(n)) for Array, O(n) for Linked List
e add O(n)
e removeO(n)
Map [K,V] as a balanced Binary Search Tree
e apply O(log(n))
e add O(log(n))
e removeO(log(n))



Finding Items

For most of these operations, the expensive part is finding the record...



Finding Items

For most of these operations, the expensive part is finding the record...

So...let's skip the search



Assigning Bins

Idea: What if we could assign each record to a location in an Array

e Create and array of size N

e Pick an O(1) function to assign each record a number in [0,N)
o ie: If our records are names, first letter of name — [0,26)



Assigning Bins




Assigning Bins

W B cCcD . P . Z




Assigning Bins

W B C D . e .. Z




Assigning Bins

MW e cB . . 2




Assigning Bins

Pros

e O(1)insert
e O(1)find

e O(1) remove

Cons
e Wasted space (3/26 slots used in the example)
e Duplication (What about inserting Aramis)



Assigning Bins Buckets

Pros

e O(1)insert
e O(1)find

e O(1) remove

Cons
e Wasted space (3/26 slots used in the example)
e Duplication (What about inserting Aramis)



Bucket-Based Organization

Wasted Space
e Not ideal...but not wrong
e O(1) access time might be worth it
e Also depends on the choice of function

Duplication
e We need to be able to handle duplcates



Dealing with Duplication

How could we address the duplication problem?



Dealing with Duplication

How could we address the duplication problem?

Idea: Make buckets bigger!



Bigger Buckets

Fixed Size Buckets (B elements) Arbitrarily Large Buckets (List)
Pros Pros

e Can deal with up to B dupes e No limit to number of dupes
e Still 0O(1) find Cons

Cons e O(n) worst-case find

e What if more than B dupes?



Buckets + Linked Lists

Porthos

1]

1]




Buckets + Linked Lists

. B C . oooooo Z
H BN | BN I
%) o %] %) 2
%)




Picking a Hash Function

Desirable features for h(x):
e Fast —needs to be 0(1)
e "Unique" — As few duplicate bins as possible



Picking a Hash Function

Elements/Bucket

Buckets



Picking a Hash Function

Elements/Bucket

apply (k) is O(1)

Buckets



Picking a Hash Function

Ideal!

Elements/Bucket

apply (k) is O(1) ...but unachievable

Buckets



Picking a Hash Function

Elements/Bucket

Buckets



Picking a Hash Function

apply (k) is O(n)

Elements/Bucket

Buckets



Picking a Hash Function

Worst Case!

apply (k) is O(n)

Elements/Bucket

Buckets



Picking a Hash Function

Elements/Bucket

Buckets




Picking a Hash Function

Elements/Bucket

apply (k) is something like 0(1)?

Buckets




Picking a Hash Function

Almost Ideal!

...and achievable

Elements/Bucket

apply (k) is something like 0(1)?

Buckets




Other Functions

First Letter of UBIT Name
e Unevenly distributed, O(n) worst case apply



First Letter of UBIT Name

36 j's

B count(l1)




Other Functions

First Letter of UBIT Name
e Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
e Need a 50m+ element array



Other Functions

First Letter of UBIT Name
e Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
e Need a 50m+ element array
e Problem: For reasonable N identity function returns something > N



Other Functions

First Letter of UBIT Name
e Unevenly distributed, O(n) worst case apply

Identity Function on UBIT #
e Need a 50m+ element array
e Problem: For reasonable N identity function returns something > N

e Solution: Cap return value of function to N with modulus
o (x:Int)=>x%N



Identity of UBIT # mod 26

B count(l)

m
~—
y

ke



Comparison

B count(l)

UBIT # % 26

B count(1)

substr(UBITName, 0, 1)




Comparison

B count(1)
UBIT # % 26
This still relies on UBIT #
being "randomly distributed"
40+ B count(1)

substr(UBITName, 0, 1)




Picking a Hash Function

Wacky Idea: Have h(x) return a random value in [O,N)

(This makes apply impossible...but bear with me)



Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

1
E[b; ;] = N



Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

E

- n



Random Hash Function

n = number of elements in any bucket

N = number of buckets

)
1 if element 7 is assigned to bucket j
bz g = 5 .
\O otherwise
The expected
Only true if in any bucket j

bij and bij are
uncorrelated for anyi#i

n / number of elements
Z bii| =

(h(i) can’t be related to h(i’))



Random Hash Function

n = number of elements in any bucket

N = number of buckets

(1 if element i is assigned to bucket 7

\ 0 otherwise

Expected runtime of insert, apply, remove: O(n/N)

Worst-Case runtime of insert, apply, remove: 0(n)



Hash Functions In the Real-World

Examples

e SHA256 «— Used by GIT

e MD5, BCRYPT <« Used by unix login, apt
e MurmurHash3 <« Used by Scala

hash(x) is pseudo-random

e hash(x) ~ uniform random value in [0, INT_MAX)

e hash(x) always returns the same value for the same x
e hash(x) is uncorreleted with hash(y) forall x zy



Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.



Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant



Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

Fixana _ and start requiring thata <o

ax



Hash Functions + Buckets

n n
Everything is: @, (—) Let's call @ — —— the load factor.

Idea: Make o a constant

Fixana _ and start requiring thata <o

ax

What do we do when this constraint is violated?



