
Dr. Eric Mikida
epmikida@buffalo.edu

Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall

CSE 250
Data Structures

Day 37
Spatial Data Structures

mailto:epmikida@buffalo.edu
mailto:okennedy@buffalo.edu

Some Problems are REALLY Big

ESA/Hubble and NASA: http://www.spacetelescope.org/images/potw1006a/

http://www.spacetelescope.org/images/potw1006a/

Some Problems are REALLY Small

Molecular Dynamics Simulation of Liquid Water
https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

https://commons.wikimedia.org/wiki/File:A_Molecular_Dynamics_Simulation_of_Liquid_Water_at_298_K.webm

Some Problems are REALLY Detailed

This is NOT a photo. It is a
computer generated image.

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png

https://en.wikipedia.org/wiki/Ray_tracing_%28graphics%29#/media/File:Glasses_800_edit.png

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What points are closest to a given point?

Which points fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What points are closest to a given point?

Which points fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

What do these things have in common?

The have MANY elements (celestial bodies, molecules, mesh cells, etc)
which are organized spatially

What "bodies" (other planets, molecules, etc) are close to each other?

Which object(s) will a ray of light bounce/projectile hit?

What points are closest to a given point?

Which points fall within a given range?

How can we organize these elements in a way that allows us to efficiently
answer these questions?

Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently
organize/store "sorted" data?

Idea: What if we organize our data in a BST

Organizing/Storing Our Data

What data structure have we seen already that lets us efficiently
organize/store "sorted" data?

Idea: What if we organize our data in a BST

Binary Search Trees (for one dimension)

class Node[T <: Comparable](value: T)

{

 /** Guarantee:

 left.value < this.value **/

 val left: Node[T] = Empty

 /** Guarantee:

 right.value >= this.value **/

 val right: Node[T] = Empty

}

64

56 77

5848 9370

Binary Search Trees (for one dimension)

Insert

● Find the right spot: O(depth)
● Create and insert the node: O(1)

Find

● Find the right node: O(depth)
● Return the value if it is present: O(1)

If the tree is balanced, O(depth) = O(log(n))

64

56 77

5848 9370

Multiple Dimensions

This worked for 1-dimensional data…How could we change it to work with
2-dimensional data, ie (Birthday, Zip Code)?

Multiple Dimensions

Goal: Create a data structure that
can answer:

1. Find me everyone with a
specific birthday

2. Find me everyone in a
specific zip code

3. Find me everyone that has a
specific birthday AND zip
code

Idea 1: BST over birthday
- Operation 2 is O(n)
- Operation 3 is O(log(n) + |people sharing a

bday|)

Idea 2: BST over zip code
- Operation 1 is O(n)
- Operation 3 is O(log(n) + |people sharing a

zip|)

Idea 3: BST over birthday, then zip (lexical order)
- Operation 2 is still O(n)

Why did it fail?

Ideas 1 & 2

BST works by grouping “nearby”
values together in the same
subtree….

… but “near” in one dimension
says nothing about the other!

Idea 3

BST works by partitioning the
data…

… but lexical order partitions fully
on one dimension before
partitioning on the other.

Related Problems

Mapping
● What’s within ½ mile of me?
● What’s within 2 minutes of my route?

Games
● What objects are close enough that they might need to be rendered?

Science
● “Big Brain Project”: Neuron A fired, so what other neurons are close enough to be

stimulated?
● "Astronomy"/"MD": What forces are affecting a particular body, and what forces

can we ignore/estimate?

The 2DMap[T] ADT

insert(x: Int, y: Int, value: T): Unit
Add an element to the map at point (x, y)

apply(x: Int, y: Int): T
Retrieve the element at point (x, y)

range(xlow: Int, xhigh: Int, ylow: Int, yhigh: Int): Iterator[T]
Retrieve all elements in the rectangle defined by ([xlow, xhigh), [ylow, yhigh))

knn(x: Int, y: Int, k: Int)
Retrieve the k elements closest to the point (x, y) (k-nearest neighbor)

Attempt 1 - Partition on BOTH dimensions

Possible Values:

Current Node

Left subtree Right subtree

Attempt 1 - Partition on BOTH dimensions

Possible Values:
Current Node

HH subtreeLH subtree

LL subtree HL subtree

Each Node has 4 Children

Each Node has 4 Children

“Binary” Search Tree
● Bin - Prefix meaning “2”
● Each node has (at most) 2 children

“Quadary” Search Tree
● Quad - Prefix meaning 4
● Each node has (at most) 4 children
● Usually say: “Quad-Tree” instead

Quad Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root

 while(current.isDefined && (current.x != x || current.y != y)){
 if(current.x < x){
 if(current.y < y){ current = current.llChild }
 else { current = current.lhChild }
 } else {
 if(current.y < y){ current = current.hlChild }
 else { current = current.hhChild }
 }
 }

 return current
}

Quad Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root

 while(current.isDefined && (current.x != x || current.y != y)){
 if(current.x < x){
 if(current.y < y){ current = current.llChild }
 else { current = current.lhChild }
 } else {
 if(current.y < y){ current = current.hlChild }
 else { current = current.hhChild }
 }
 }

 return current
} What’s the complexity?

Quad Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root

 while(current.isDefined && (current.x != x || current.y != y)){
 if(current.x < x){
 if(current.y < y){ current = current.llChild }
 else { current = current.lhChild }
 } else {
 if(current.y < y){ current = current.hlChild }
 else { current = current.hhChild }
 }
 }

 return current
} What’s the complexity? O(log(d))

Quad Trees - Other Operations

insert(x, y, value)

● Find placeholder spot corresponding to (x, y): O(d)
● Create and inject new node: O(1)

apply(x, y)

● Find position corresponding to (x, y): O(d)
● Return the node if it exists: O(1)

range(xlow, xhigh, ylow, yhigh)

● …?

Quad Trees - Range

Quad Trees - Find Node (With Range)
def findNode(x: Int, y: Int): Node[T] = {
 var current = root
 var range = Rectangle(-∞, -∞, ∞, ∞)

 while(current.isDefined && (current.x != x || current.y != y)){
 if(current.x < x) {
 if(current.y < y){ current = current.llChild;
 current.range = range.crop(Rectangle(-∞, -∞, x, y)) }
 else { current = current.lhChild;
 current.range = range.crop(Rectangle(-∞, y, x, ∞)) }
 } else {
 if(current.y < y){ current = current.hlChild;
 current.range = range.crop(Rectangle(x, -∞, ∞, y)) }
 else { current = current.hhChild;
 current.range = range.crop(Rectangle(x, y, ∞, ∞)) }
 }
 }
 return current
}

def range(target: Rectangle): Seq[Node[T]] = {
 val ret = Buffer[Node[T]]()

 def visit(current: Node[T]) = {
 if(target.intersect(current.range).isEmpty) { return }
 if(target.contains(current.x, current.y)){ ret.append(current) }
 if(ll.isDefined) { visit(llChild) }
 if(lh.isDefined) { visit(lhChild) }
 if(hl.isDefined) { visit(hlChild) }
 if(hh.isDefined) { visit(hhChild) }
 }
 visit(root)
}

Quad Trees - Range

Quad Trees - Challenges

Creating a balanced Quad Tree is hard

● Impossible to always split collection
elements evenly across all four
subtrees
(though depth = O(log(n)) still possible)

Keeping the quad tree balanced after
updates is significantly harder

● No “simple” analog for rotate left/right.

Worst Case:
No possible way to create nodes
with >2 nonempty subtrees

Quad Trees - Challenges

Problem: Every node has 4 children!

Revisiting Lexical Order

Problem : Searches on lexical order partition all of one dimension first

Revisiting Lexical Order

Idea: Alternate dimensions

k-D Trees

All nodes at
the same
depth partition
on the same
dimension

k-D Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root
 var depth = 0

 while(current.isDefined && (current.x != x || current.y != y)){
 if(depth % 2 == 1) { if(current.x < x) { current = current.left }
 else { current = current.right }
 else { if(current.y < y) { current = current.left }
 else { current = current.right }
 depth += 1
 }
 return current
}

k-D Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root
 var depth = 0

 while(current.isDefined && (current.x != x || current.y != y)){
 if(depth % 2 == 1) { if(current.x < x) { current = current.left }
 else { current = current.right }
 else { if(current.y < y) { current = current.left }
 else { current = current.right }
 depth += 1
 }
 return current
} What’s the complexity?

k-D Trees - Find Node

def findNode(x: Int, y: Int): Node[T] = {
 var current = root
 var depth = 0

 while(current.isDefined && (current.x != x || current.y != y)){
 if(depth % 2 == 1) { if(current.x < x) { current = current.left }
 else { current = current.right }
 else { if(current.y < y) { current = current.left }
 else { current = current.right }
 depth += 1
 }
 return current
} What’s the complexity? O(log(d))

k-D Trees - Other Operations

insert(x, y, value)

● Find placeholder spot corresponding to (x, y): O(d)
● Create and inject new node: O(1))

apply(x, y)

● Find position corresponding to (x, y): O(d)
● Return node if it exists: O(1)

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

Nearest Neighbor

What if we want to find the closest point to our target?

Problem: Can't just do normal find; the target may not be in the tree at all

Idea: Search like normal until we hit a leaf, then go back up the tree and
see if there's a possibility we missed something.

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

8 > 4, go right

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

3 < 10, go left

8 > 4, go right

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Now we must go back up the
tree to make sure there isn't a

closer point!

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

What point is
closest to (3, 8)

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?

No! Look at the area
defined our target and our
current best.

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Is it possible for something in
the other child of 5,4 to be

closer?

It does not reach the splitting line
that partitions the children of 5,4,
so nothing in the other child can
be closer

No! Look at the area
defined our target and our
current best.

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Moving up to 10,4 is it
possible that a closer point is

in it's other child?

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

Moving up to 10,4 is it
possible that a closer point is

in it's other child?

No! Same logic applies. Our
current best radius does not
reach the splitting line

Nearest Neighbor - Example 1

10,4

5,4 19, 10

9,1 1,6 13,6 16,15

?

Found a leaf! This is our "closest so far"
It is 2.828 units away from our target

We've reached the root, so the
closest point is (1,6)!

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?
What is the closest

point to (11,9)?

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As before we travel
down to a leaf and
treat that as our
current best

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As before we travel
down to a leaf and
treat that as our
current best

This also defines
our current
search radius

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As we travel back up
the tree, do we need
to check the other
child of 19,10?

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

As we travel back up
the tree, do we need
to check the other
child of 19,10?

Yes! The splitting line
intersects our current
radius!

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

When we check the
other child tree, we do
find a closer point so
we can update our
radius.

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

Now we are back at
the root…do we need
to check the left
subtree?

Nearest Neighbor - Example 2

10,4

5,4 19, 10

9,1 1,6 13,6 12,12

?

Now we are back at
the root…do we need
to check the left
subtree?

Yes :(
Our search radius intersects with the
splitting line, so it's possible there are
points in the other subtree closer to us…

Generalization: k-Nearest Neighbors

Finding one point can be as fast as O(log(d)), but as slow as O(n)...

What if we want to find the k-Nearest Neighbors instead?

Idea: Keep a list of the k-nearest points, and the furthest point defines our
"search radius"

k-D Trees

● Can generalize to k>2 dimensions
○ Depth 0: Partition on Dimension 1
○ Depth 1: Partition on Dimension 2
○ …
○ Depth k+1: Partition on Dimension k
○ Depth k+2: Partition on Dimension 1
○ Depth k+3: Partition on Dimension 2
○ Depth i: Partition on Dimension (i mod k) + 1

● In practice, range() and knn() become ~ O(n) for k > 3
○ If a subtree’s range overlaps with the target in even one dimension, we

need to search it. (Curse of Dimensionality)

The name k-D tree comes from
this generalization

(k-Dimensional Tree)

https://en.wikipedia.org/wiki/Curse_of_dimensionality

Other Problems: N-Body Problem

What if we want to compute interactions between one body and every
other body?

Naively, this would be O(n2)...but likely we don't care as much about
interactions with bodies that are very very far away.

Other Problems: N-Body Problem

Idea: Divide our points into a
quadtree (or octree in 3 dimensions)

Do full calculation for points closeby
(in the same box)

Compute a summary (ie total force
and center of mass) for each box
that can be applied to far away
boxes

A point here

has very little
effect on a
point over

here…

Runtime is now O(nlog(n))

Other Problems: Ray/Path Tracing

Which object does this ray of light hit?
Do we have to check every single object?

Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

Other Problems: Ray/Path Tracing

Idea: Build a hierarchy of bounding boxes
(BVH - Bounding volume hierarchy)

Other Problems: Ray/Path Tracing

These bounding boxes form a tree
We can check if the ray intersects a
bounding box. If it does, explore that child.
If not, ignore it.

Other Problems: Ray/Path Tracing

These bounding boxes form a tree
We can check if the ray intersects a
bounding box. If it does, explore that child.
If not, ignore it.

Other Problems: Ray/Path Tracing

These bounding boxes form a tree
We can check if the ray intersects a
bounding box. If it does, explore that child.
If not, ignore it.

Other Problems: Ray/Path Tracing

These bounding boxes form a tree
We can check if the ray intersects a
bounding box. If it does, explore that child.
If not, ignore it.

✓

Other Problems: Ray/Path Tracing

If we build our BVH effectively, the runtime
becomes logarithmic.

✓

