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Part 1: Scala Types (5 points total)

Consider the following scala code:

1 val x = 7.0f * 8 + 9.2

Question 1 (5 points)

What is the type of x? (pick one)

□ Integer

□ Long

□ Float

x Double

2



UBIT: CSE 250 — Fall 2021

Part 2: Scala Objects (10 points total)

Consider the following definition:

1 trait Foo

2 {

3 def apply (): Unit = println("Hello World!")

4 }

Question 2 (5 points)

Foo may be instantiated (i.e., writing new Foo in the scala interpreter will not throw an error).

Circle One: True / [[False]]

Question 3 (5 points)

A class may extend Foo

Circle One: [[True]] / False
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Part 3: Scala Mutability (10 points total)

Consider the variable seq defined and manipulated as follows:

1 var seq = scala.immutable.Seq(’A’, ’B’, ’C’)

2 myFunctionThatDoesThings(seq)

Question 4 (5 points)

After the initialization process above (and not knowing anything about how myFunctionThatDoesThings is
implemented), it is 100% safe to assume that seq(2) returns ’C’

Circle One: [[True]] / False

Question 5 (5 points)

After the initialization process above, the following operation is valid scala. In other words, if the following
line were appended to the line above, the compiler would not indicate an error.

3 seq = scala.immutable.Seq(’Q’, ’R’, ’S’)

Circle One: [[True]] / False
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Part 4: Asymptotic Analysis (20 points total)

Consider the following formulas:
f(n) = 5n2 log2(n) + 8n2 + 2log(20n)

g(n) = 2n log(n) + 3n+ 9 log(n · 2n)

Question 6 (10 points)

Provide the simplified tight lower-bound for f(n) with the appropriate asymptotic choice (O, Omega, Theta).

The lower bound operation is Ω. A “tight” bound means that we can’t get a lower complexity class. Since
the curve of the equation is smooth (i.e., there is no “case” style behavior), this is always the dominant term
in the expression.
A sufficient answer to this question is Ω(n2 log2(n))
To prove to yourself that n2 log2(n) is the dominant term, consider:
First, for sufficiently large n, is

n2 log2(n) ≥ n2

log2(n) ≥ 1

True!
Second, for sufficiently large n, is

n2 log2(n) ≥ 2log(20n)

n2 log2(n) ≥ 20n

n log2(n) ≥ 20

True!

Question 7 (10 points)

Provide the simplified tight upper-bound for g(n) with the appropriate asymptotic choice (O, Omega, Theta).

The dominant term here is not entirely obvious due to the term at the end. By the log rules:

log(n · 2n) = log(n) + log(2n) = log(n) + n

So, the dominant term is n log(n)
The upper bound is O, and its tight value is the dominant term.
A sufficient answer to this question is O(n log(n))
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Part 5: The List Adt (15 points total)

Recall FixedArrayListV3, the final variant of the ListADT abstract data type we implemented in class. (We later
called this the ArrayBuffer, or resizable array). Assume that the variable arr is instantiated as follows

1 val n = Random.nextInt (100000)

2 val arr = new FixedArrayListV3[Int]()

3 arr.reserve(n)

4 for(i ← 0 until n){ arr.insert(idx = i, elem = 0) }

For each of the following snippets of code, state its runtime complexity in terms of n (and/or m if applicable).

Question 8 (7 points)

1 arr.insert(idx = k, elem = 42)

Θ(n− k), Θ(n), O(n− k), or O(n) would all be acceptable answers.

Question 9 (8 points)

1 val m = Random.nextInt (1000000)

2 for(i ← 0 until m) { arr.insert(idx = arr.length , elem = m) }

Θ(m) or O(m) would both be acceptable answers.
Notably, any answer involving a multiplicative n term (e.g., O(m · n)) would not be a correct answer, since
append (i.e., inserting at the end) always has an amortized O(1) runtime. O(m+ n) is technically correct as
well.
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Part 6: Linked Lists (10 points total)

Recall the LinkedListBuffer implementation of a linked list that you’re working on for PA1. Consider an instance
of LinkedListBuffer[String] with the following state:

_value ="Maine Coon" _value ="Ocicat" _value ="Longhair" _value ="Birman"

_prev =-1 _next =2 _prev =2 _next =3 _prev =0 _next =1 _prev =1 _next =-1

_head =0

_tail =3

_numStored =4

Question 10 (10 points)

What is the sequence that the buffer encodes (i.e., what sequence of values does buffer.iterator produce)?

Starting at the index referenced by the head variable, we iterate following the next variables, producing the
sequence:

1. Main Coon

2. Longhair

3. Ocicat

4. Birman
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Part 7: Stacks And Queues (5 points total)

Consider the following code:

1 val seq1 = Seq(17, 73, 65, 0)

2 val seq2 = Seq(45, 1, 14, 48)

3 val queue = scala.collection.mutable.Queue()

4

5 for(i ← seq1){ queue.enqueue(i) }

6 for(i ← 0 until 3){ queue.dequeue () }

7 for(i ← seq2){ queue.enqueue(i) }

8 while (!queue.isEmpty ){

9 println(queue.dequeue ())

10 }

Question 11 (5 points)

What does the above code print?

� Line 5, enqueue all of seq1: queue = 17, 73, 65, 0

� Line 6, dequeue 3 times: queue = 0

� Line 7, enqueue all of seq2: queue = 0, 45, 1, 14, 48

� Lines 8-10, print the queue in order

The final output will be:

1 0

2 45

3 1

4 14

5 48

8



UBIT: CSE 250 — Fall 2021

Part 8: Graphs (15 points total)

Consider the following graph G:

A

D

C E

FB

Question 12 (5 points)

How many vertices are in the largest connected component?

The two connected components are A,B,C,D and E,F , so 4 in the bigger one.
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Question 13 (10 points)

List the vertices visited by DFSOne(G, A) in the order in which they are visited. Assume that iteration
over incidence lists happens in ascending alphabetical order of the opposite edge. For example, starting from
a hypothetical vertex X, the edge (X,Y ) would be traversed before the edge (X,Z).

A sufficient answer would be A, B, D, C
The detailed execution trace is:

1. DFS visits A, calling DFSOne on it

2. DFSOne moves from A to B

3. DFSOne checks the B to A edge, but the edge is already marked visited.

4. DFSOne moves from B to D

5. DFSOne checks the D to B edge, but the edge is already marked visited

6. DFSOne moves from D to C

7. DFSOne checks the C to A edge. The edge is unvisited, but A has been visited, so the edge is marked
as a back-edge.

8. DFSOne checks the C to D edge, but the edge is already marked visited

9. DFSOne is done visiting C’s edges and backtracks to D

10. DFSOne is done visiting D’s edges and backtracks to B

11. DFSOne is done visiting B’s edges and backtracks to A

12. DFSOne checks the A to C edge, but the edge is already marked visited

13. DFSOne is done visiting A’s edges and backtracks to the outer DFS call

14. DFS checks B, but it is already visited.

15. DFS checks C, but it is already visited.

16. DFS checks D, but it is already visited.

17. DFS visits E, calling DFSOne on it

18. DFSOne moves from E to F

19. DFSOne checks the F to E edge, but the edge is already marked visited.

20. DFSOne is done visiting F’s edges and backtracks to E

21. DFSOne is done visiting E’s edges and backtracks to the outer DFS call

22. DFS checks F, but it is already visited.
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Part 9: Graph Runtime (10 points total)

Question 14 (10 points)

As we discussed in class, the runtime of BFS is O(|V |+ |E|). However, this runtime assumes that the graph
is stored in an adjacency list structure. What is the runtime if we instead use an edge list. Recall that an
edge list is an adjacency list without the list of incident edges (or in/out edges) for each vertex.

The key difference between these two data structures is that the edge list requires O(|E|) time to enumerate
the edges incident on a specific vertex v ∈ V , while the adjacency list can do so in O(deg(v)). BFSOne iterates
through all of the adjacent edges once per node it visits, so its runtime per node visited is O(deg(v)). Since
it visits each node exactly once, the total runtime is O(

∑
v∈V deg(v)) = O(|E|). If the cost of enumerating

incident edges goes up to O(|E|), we get a runtime of O(
∑

v∈V |E|) = O(|V ||E|), which becomes the dominant
term in the runtime.
O(|V | · |E|)
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