
Final
CSE 410— Spring 2024

Name:

UBIT:

Academic Integrity

My signature on this cover sheet indicates that I agree to abide by the academic integrity policies of this course,
the department, and university, and that this exam is my own work.

Signature: Date:

Instructions

Write your name and UBIT above, sign the Academic Integrity notice, and wait for course staff to begin the exam.

Answer each question on this exam to the best of your ability. You may make notes or perform calculations in the
margins or any blank area on the bottom or margins of exam pages, on the designated scratch pages, or on the back of
this cover sheet. If you mis-mark an answer and need to correct it, draw a line through the mis-marked answer and circle
the corrected answer.

Questions vary in difficulty. Do not get stuck on one question. When you are finished, check to ensure that you have
answered all questions, then turn in the entire exam (including all scrap pages used) to course staff.

Scrap Page

UBIT: Final - Part A CSE 410— Spring 2024

Part a: NYC Taxi Trip Data

The New York City Taxi & Limousine Commission releases a yearly dataset, recording every taxi trip taken in New York
City over the course of the year. For example, the 2018 dataset contains 112 million rows, each with 18 columns. Column
types include number, plain text, and timestamps (treat as numbers). An incomplete list of example columns includes:
(a) Vendor ID, (b) Pickup Timestamp, (c) Drop-Off Time, (d) Passenger Count, (e) Payment Type, (f) Pickup location,
(g) Dropoff location, (h) Store and Forward Flag, (i) Fare, Tip, Tolls, Fees, Total Amount. The dataset is provided in no
particular order.

Question A1 [10 points]

Propose a strategy, at the level of individual files, pages, and bytes, and sort order, for storing the 2018 NYC
T&LC dataset on disk. Use diagrams wherever helpful. A good measure of whether you have a complete answer
is whether a reader can unambiguously infer where the individual bytes of each field of each record are located
within a file. Your answer does not need to enumerate every individual attribute above; you may instead provide
generic guidelines for how numbers and plain text are to be handled.

Answer

The question is open-ended, so there is no one correct answer. However, as an example of the class of
answer this question was looking for:
The dataset is stored row-wise in a paged layout in a single file. Each page uses an indexed layout, with a
header containing pointers to each record. Individual records are stored using an index header to identify
the location of each cell.

Point Breakdown

• (5 pt) The answer clearly describes a correct strategy for laying out data on disk.
• (5 pt) The strategy is reasonable for the data proposed.

Question A2 [10 points]

Propose a second strategy, distinct from your answer to Question 1. Clearly identify a situation (e.g., workload,
disk style, etc...) where your new strategy would be preferable, and clearly identify a situation where your original
strategy would be preferable.

Answer

The question is open-ended, so there is no one correct answer. However, as an example of the class of
answer this question was looking for:
The dataset is stored column-wise with one file per column. Columns with fixed-size datatypes are stored
directly as arrays. Columns with variable-size datatypes are encoded with a dictionary encoding and stored
directly as arrays.

Point Breakdown

• (5 pt) The answer clearly describes a correct strategy for laying out data on disk.
• (5 pt) The answer clearly describes a situation in which the strategy would be preferable to that
outlined in A1.

3

UBIT: Final - Part B CSE 410— Spring 2024

Part b: SQL

Each of the following parts will provide a SQL query and identify a table used by the query. For the identified table, answer
the attached Yes/No questions, and provide a justification in no more than one sentence . Unless otherwise specified,
assume that all tables are stored as an unsorted collection of records (e.g., an unsorted array).

Question B1 [5 points]

SELECT COUNT(∗) FROM students WHERE c r e d i t s > 12 ;

Answer the following questions with respect to the students table.
1. Would the query run faster if the table were instead stored in a B+Tree?

Circle One

Yes No

Justification

2. If a bloom filter were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

3. If a fence pointer table were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

Answer

1. Yes; The query is looking for a range of values. A B+ tree indexed on credits could be used to
efficiently (log time + linear in the result size) enumerate the subset of the result table that matches
the query

2. No; Bloom filters support testing for the presence of individual elements, not ranges.
3. Yes; A sorted array with a fence pointer table over it works like a B+ Tree. Answers that noted that

a fence pointer table didn’t necessarily imply sortedness of the underlying data got full credit for this
part.

Point Breakdown

• (1 pt) (Yes) for parts 1, 3
• (2 pt) A justification related to the support for range-based filtering for parts 1, 3
• (2 pt) (No) for part 2 with a justification related to the lack of support for range-based filtering.

4

UBIT: Final - Part B CSE 410— Spring 2024

Question B2 [5 points]

SELECT ∗ FROM students WHERE id = 23 ;

Answer the following questions with respect to the students table.
1. Would the query run faster if the table were instead stored in a B+Tree?

Circle One

Yes No

Justification

2. If a bloom filter were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

3. If a fence pointer table were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

Answer

1. Yes; The query is looking for a specific value. A B+ tree indexed on credits could be used to efficiently
(log time) locate the record in question, if it exists.

2. Yes; A bloom filter over the id attribute could determine if there was no record id = 23, saving a
trip to disk. Answers of No who’s justification noted that record lookups by id were likely to be
present (thus negating the value of the bloom filter) got full credit.

3. Yes; A sorted array with a fence pointer table over it works like a B+ Tree.

Point Breakdown

• (1 pt) (Yes) for parts 1, 3
• (2 pt) A justification related to the support for range-based filtering for parts 1, 3
• (2 pt) (Yes) for part 2 with a justification related to the query being a single-record lookup

5

UBIT: Final - Part B CSE 410— Spring 2024

Question B3 [5 points]

SELECT COUNT(∗) FROM students JOIN enro l lment
ON student . id = enro l lment . s tuden t i d

Answer the following questions with respect to the enrollment table.
1. Would the query run faster if the table were instead stored in a B+Tree?

Circle One

Yes No

Justification

2. If a bloom filter were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

3. If a fence pointer table were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

1. Would the query run faster if the table were instead stored in a B+Tree?

Circle One

Yes No

Justification

2. If a bloom filter were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

3. If a fence pointer table were available for this table, could it be used to make the query run faster.

Circle One

Yes No

Justification

Answer

1. Yes; The query is iterating over all records; an index on student id would allow lookups without
having to construct hash-tables; or would necessitate that data be sorted, allowing the use of sort-
merge join. Answers of No that explicitly related the runtime complexity of 1p or 2p hash join to
the potential value of the B+ Tree in reducing lookup cost received full credit.

2. Yes; A bloom filter over student id could be used to pre-filter rows of the student table, reducing
memory complexity, and potentially opening 2 pass hash join. Answers of No that explicitly called
out the low likelihood that there would be no enrollment records for a given student id received
full credit.

3. Yes; A sorted array with a fence pointer table over it works like a B+ Tree.

Point Breakdown

• (2 pt) (Yes) for all 3
• (2 pt) A justification related to the use of existing indexes instead of rebuilding a new one for the
hash join

6

UBIT: Final - Part B CSE 410— Spring 2024

Question B4 [5 points]

SELECT COUNT(∗) FROM students JOIN enro l lment
ON student . id = enro l lment . s tuden t i d

Identify two different join algorithms that could be used to implement the query above. For each algorithm you
identify state a property of students, enrollment, and/or the query result, where the algorithm you identified would
be preferable.

Answer

The question is open-ended, so there is no one correct answer. However, as a few examples of algorithms
and ideal use cases:

• Sort Merge Join: Linear time if student and enrollment are already sorted on the id field.
• 1 pass Hash Join: Lowest overall IO if sufficient memory exists to hold students or enrollment
entirely in memory.

• 2 pass Hash Join: Lowest IO complexity if neither students nor enrollment will fit entirely in
memory.

Point Breakdown

• (2+1 pt) 2 different join algorithms indicated
• (1+1 pt) Correct justification for each algorithm

7

UBIT: Final - Part C CSE 410— Spring 2024

Part c: The RAM/EM Models

Consider each of the following algorithms, with the explicitly listed algorithm parameters. For each:

1. Identify every line of pseudocode that allocates memory, and identify where in the program that memory may be
released.

2. Identify every line of pseudocode that performs IO (i.e., reads from/writes to disk) and state the IO complexity of
the operation.

3. Identify the point in the algorithm where the maximum amount of memory has been allocated.

4. Set up a summation for the total IO performed during the algorithm.

5. State the worst-case (Big-O) Memory and IO complexity of the algorithm.

Question C1 [10 points]

The following algorithm performs the first part of sorting a dataset R initially provided as an on-disk file. The
algorithm is provided in two parts. Your answer for this question should provide an analysis exclusively with
respect to this first part of the algorithm. Complexity measures should be given in terms of |R| (the number of
records in the input file), B (buffer-size), and K (fan-in).

buffer← a new B-element buffer
sorted runs← a new, empty queue
while R has more data do

Read up to B records from R into buffer (or less if fewer records exist in R)
Sort buffer in-place, in memory
run← a newly created file
Write buffer to run

Enqueue run to sorted runs

end while

Answer

1. Allocations include buffer (O(B); freed at end), sorted runs (O(1); produced as output), and data

enqueued into sorted runs (O(1) ·O(|R|
B) times; produced as output).

2. IOs include reading records from R into buffer, and writing buffer to run.

3. Max memory at end, with O(|R|
B) entries in sorted runs.

4. Reading
∑ |R|

B O(B) = O(|R|) and writing a like amount.

5. O(|R|) IOS, O(|R|
B) memory

Point Breakdown

• (1 pt) Every allocation identified
• (1 pt) Every deallocation identified
• (1 pt) Every IO identified
• (1 pt) Complexity of every IO correct
• (2 pt) Point of max memory allocation correctly identified
• (2 pt) Correct summation for IO
• (1 pt) Correct Mem complexity
• (1 pt) Correct IO complexity

8

UBIT: Final - Part C CSE 410— Spring 2024

Question C2 [10 points]

The following algorithm performs the second part of sorting a dataset R initially provided as an on-disk file. The
algorithm is provided in two parts. Your answer for this question should provide an analysis exclusively with
respect to this second part of the algorithm (ignore memory allocated during the first part). Complexity measures
should be given in terms of |R| (the number of records in the input file), B (buffer-size), and K (fan-in).

while |sorted runs| > 1 do
current level← a vector containing up to K elements dequeued from sorted runs

For each file in current level seek to the start of the file.
output← a newly created file
while At least one file in current level has more data do

r← the result of reading the least value that would be read next from any file in current level.
Write r to output

end while
Enqueue output to sorted runs

end while
Dequeue from sorted runs and return the result

Answer

1. Allocations include current level (O(K); freed at end), r (O(1); released after while loop body), and
data enqueued into sorted runs (based on the observation that every enqueue follows K dequeues,
memory usage shrinks)

2. IOs include reading one record at a time from current level (O(1)) and writing one record at a time
to output (O(1)). Observing that each iteration through the outer while loop dequeues K elements

and enqueues 1 element, you can conclude that the outer while loop runs O(|R|
K) times. The inner

while loop is bounded by |R|, since each record is read/written at most once. A slightly more intricate

approach would be to note that, since this is merge sort, you can model the first (|R|
K) iterations as

performing |R| IOs, the next |R|
K2 iterations as performing |R| IOs, and so forth, leading to logK |R|

layers, each performing |R| IOs.

3. Max memory at start, with O(|R|
B) entries in sorted runs.

4. Depending on the answer to 2, either,
∑ |R|

K O(|R|) = |R|2
K or

∑logK |R|
i=1

∑ |R|
Ki O(|R|) =

O(|R| logK(|R|)).
5. |R|2

K or O(|R| logK(|R|)) IOS, O(|R|
B) memory

Point Breakdown

• (1 pt) Every allocation identified
• (1 pt) Every deallocation identified
• (1 pt) Every IO identified
• (1 pt) Complexity of every IO correct
• (2 pt) Point of max memory allocation correctly identified
• (2 pt) Correct summation for IO
• (1 pt) Correct Mem complexity
• (1 pt) Correct IO complexity

9

UBIT: Final - Part C CSE 410— Spring 2024

Question C3 [10 points]

The following algorithm performs a depth-first traversal of a graph G to build a spanning tree stored in the output
file. The graph’s adjacency list (i.e., out-edges) is stored in an on-disk B+Tree, using the vertex ID as a key.
Complexity measures should be given in terms of |G| (the number of vertices) and D (the maximum out-degree of
any vertex in G). You may assume that the graph is fully connected.

queue← a new, empty queue containing the vertex ID of an arbitrary vertex.
output← a new, empty on-disk B+Tree
while queue is non-empty do

currentID← dequeue from queue

out edges← read out edges for vertex currentID

for edge in out edges do
if output does not contain edge.destinationID then

Write (edge.destinationID→ currentID) to output

Enqueue edge.destinationID
end if

end for
end while

Answer

1. Allocations include queue (O(1); freed at end), out edges (O(D); released after while loop body),
and data enqueued into queue (recall, this is capped at |G|, since each node is enqueued at most once)

2. IOs include reading out edges (O(log |out edges| + D) < O(log |G| + D), at most O(|G|) times)
and writing (edge.destinationID → currentID) (O(log |out edges|) < O(log |G|) at most O(|G|)
times).

3. Max memory at enqueue to queue; at worst, O(|G|).
4.

∑|G|
O(D + log |G|) +O(log |G|)

5. O(|G| log |G|+ |G|D) IOS, O(|G|) memory

Point Breakdown

• (1 pt) Every allocation identified
• (1 pt) Every deallocation identified
• (1 pt) Every IO identified
• (1 pt) Complexity of every IO correct
• (2 pt) Point of max memory allocation correctly identified
• (2 pt) Correct summation for IO
• (1 pt) Correct Mem complexity
• (1 pt) Correct IO complexity

10

UBIT: Final - Part D CSE 410— Spring 2024

Part d: Concurrency

For each of the following schedules identify whether:

• The schedule is a serial schedule. Give the serial order of the processes

• The schedule is a conflict-serializable schedule. Show the happens-before graph.

• The schedule could have been created by 2-phase locking (with standard, mutex-style, locks). Show where the locks
would be placed.

• The schedule could have been created by 2-phase locking (with reader/writer locks). Show where the locks would
be placed.

Question D1 [10 points]

→ time →

P1 W(B) R(A)
P2 R(B) R(A)
P3 R(B) W(A)

→ time →

Serial

Yes No

Conflict Ser.

Yes No

2PL

Yes No

Reader-Writer 2PL

Yes No

Answer

see below

Point Breakdown

• (1 pt) (No) Serial Schedule
• (2 pt) (Yes) Conflict Serializable
• (1 pt) Happens-before graph
• (3 pt) (No) 2-phase locking
• (2 pt) (Yes) 2-phases R/W locking
• (1 pt) R/W Locks identified

11

UBIT: Final - Part D CSE 410— Spring 2024

Question D2 [10 points]

→ time →

P1 W(B) R(A)
P2 R(B) R(A)
P3 R(B) W(A)

→ time →

Serial

Yes No

Conflict Ser.

Yes No

2PL

Yes No

Reader-Writer 2PL

Yes No

Answer

see below

Point Breakdown

• (1 pt) (Yes) Serial Schedule with order
• (2 pt) (Yes) Conflict Serializable
• (1 pt) Happens-before graph
• (2 pt) (Yes) 2-phase locking
• (1 pt) Locks identified
• (2 pt) (Yes) 2-phases R/W locking
• (1 pt) R/W Locks identified

12

UBIT: Final - Part D CSE 410— Spring 2024

Question D3 [10 points]

→ time →

P1 W(B) R(A)
P2 R(B) W(A)
P3 R(B) W(A)

→ time →

Serial

Yes No

Conflict Ser.

Yes No

2PL

Yes No

Reader-Writer 2PL

Yes No

Answer

see below

Point Breakdown

• (1 pt) (No) Serial Schedule
• (2 pt) (Yes) Conflict Serializable
• (1 pt) Happens-before graph
• (3 pt) (No) 2-phase locking
• (3 pt) (No) 2-phases R/W locking (was technically a way, credit was given if justified)

13

