
P1 - Binary Search (On Disk)

Deadline: Sunday, Feb 11; 11:59 PM

Accept Assignment: https://classroom.github.com/a/hsxNiYoj

Submit Assignment: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/P1-
Binary

In this assignment, we will implement binary search using O(1) memory using file handles.

This assignment is intended to: - Familiarize you with Rust and Cargo - Familiarize you with
Rust's File API, including Seek - Familiarize you with working with binary data encodings
- Familiarize you with implementing bounded-memory algorithms.

You should expect to spend approximately 10-15 hours on this assignment. Plan accordingly.

To complete this assignment, you should:

1. Accept this assignment through GitHub Classroom.

2. Modify the file src/data_file.rs , implementing the functions labeled todo!() .

3. Commit your changes and push them to Github.

4. Go to Autolab, select your repository, acknowledge the course AI Policy, and click
Submit.

You may repeat steps 2-4 as many times as desired

Overview

In this assignment, you will be provided with a data file consisting of an arbitrary number of
serialized Record objects, each consisting of a key and a value . Each record will have a
unique key , and records will be stored in ascending sorted order of their key .

Your data_file::DataFile implementation should be able to: - Open the file - Retrieve the
nth record from the file - Perform an O(1)-memory binary search over the file to find a specific
key

Documentation

You may find the following documentation useful:

The Rust Book

std::fs::File

std::fs::Metadata

The following utility methods are provided for your convenience:

buffer_to_record(buffer)

Given a buffer, exactly the size of one record, this function will transmute it into a Record
object.

Objectives

In this assignment, you will implement three functions:

DataFile::open(path)

This method should instantiate a DataFile object using the file at the provided path. Note the
four fields of a DataFile : * file : A File reference storing an open, read-only filehandle. *
number_of_records : The number of records in the file. * min_key : The least key of any

record in the file (the key of the first record) * max_key : The greatest key of any record in the
file (the key of the last record)

You should derive the number_of_records , min_key , and max_key attributes directly from
the file. The length of the file (in bytes) is given as part of the file's Metadata .

Complexity: - Runtime: O(1) - Memory: O(1) - IO: O(1)

data_file.get(idx)

This method should return the idx th record stored in the file. If idx is out of bounds, you
should panic.

Note the buffer_to_record helper function.

Note also the bound on memory.

Complexity: - Runtime: O(1) - Memory: O(1) - IO: O(1)

data_file.find(key)

If a record with key key is present in the file, this method should return it. If a record is not

present, this function should return: - The successor of key (the record with the next highest
key) if one exists - None if key has no successor

You may assume that the records in the file are stored in sorted order.

Note the bound on memory.

Complexity: - Runtime: O(log_2(N)) - Memory: O(1) - IO: O(log_2(N))

