P1 - Binary Search (On Disk)

Deadline: Sunday, Feb 11; 11:59 PM
Accept Assignment: https://classroom.github.com/a/hsxNiY0j

Submit Assignment: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/P1-
Binary

In this assignment, we will implement binary search using O(1) memory using file handles.

This assignment is intended to: - Familiarize you with Rust and Cargo - Familiarize you with
Rust's File API, including Seek - Familiarize you with working with binary data encodings
- Familiarize you with implementing bounded-memory algorithms.

You should expect to spend approximately 10-15 hours on this assignment. Plan accordingly.

To complete this assignment, you should:
1. Accept this assignment through GitHub Classroom.
2. Modify the file src/data file.rs ,implementing the functions labeled todo! () .
3. Commit your changes and push them to Github.

4. Go to Autolab, select your repository, acknowledge the course Al Policy, and click
Submit.

You may repeat steps 2-4 as many times as desired

Overview

In this assignment, you will be provided with a data file consisting of an arbitrary number of
serialized Record objects, each consisting ofa key anda value .Each record will have a
unique key , and records will be stored in ascending sorted order of their key .

Your data file::DataFile implementation should be able to: - Open the file - Retrieve the
nth record from the file - Perform an O(1)-memory binary search over the file to find a specific
key

Documentation

You may find the following documentation useful:



e The Rust Book
o sid::fs::File

o gstd::fs::Metadata

The following utility methods are provided for your convenience:
buffer_to record(buffer)

Given a buffer, exactly the size of one record, this function will transmute it into a Record
object.

Objectives

In this assignment, you will implement three functions:
DataFile: :open(path)

This method should instantiate a DataFile object using the file at the provided path. Note the
four fields of a DataFile :* file : A File reference storing an open, read-only filehandle. *

number of records : The number of records in the file. * min_key : The least key of any
record in the file (the key of the first record) * max_key : The greatest key of any record in the
file (the key of the last record)

You should derive the number of records , min_key ,and max_key attributes directly from
the file. The length of the file (in bytes) is given as part of the file's Metadata .

Complexity: - Runtime: O(1) - Memory: O(1) - 10: O(1)
data_file.get(idx)

This method should return the idx th record stored in the file. If idx is out of bounds, you
should panic.

Note the buffer to record helper function.
Note also the bound on memory.

Complexity: - Runtime: O(1) - Memory: O(1) - 10: O(1)
data_file.find(key)

If a record with key key is presentin the file, this method should return it. If a record is not



present, this function should return: - The successor of key (the record with the next highest
key) if one exists - None if key has no successor

You may assume that the records in the file are stored in sorted order.
Note the bound on memory.

Complexity: - Runtime: O(log_2(N)) - Memory: O(1) - 10: O(log_2(N))



