
W1: RAM vs EM Algorithms
• Due: Sunday Feb 18
• Summary: 3 questions and one challenge question, for a total of 12 points.
• Submission: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W1-Binary

Submission
Only PDF-formatted files will be accepted by autolab.
• You may write out your answers by hand and scan them; Numerous apps exist for phones to ‘scan’

in written documents as a PDF.
• You may typeset your answers in LaTeX, Typst, or a similar tool.

Note that the instructor must be able to read your answer. Submissions that are unintelligible will
receive no points.

Binary Search
Recall the basic binary search algorithm.

fun binary_search(target: u32, data: Vec<u32>) -> usize
 { return binary_search(target, data, 0, data.len()); }
fun binary_search(target: u32, data: Vec<u32>, start: usize, end: usize) -> usize
{
 if(start >= end-1) { return start }

 let mid = (start - end) / 2 + start;

 if(data[mid] == target) { return mid; }
 else if(data[mid] < target){ return binary_search(target, data, mid, end); }
 else { return binary_search(target, data, start, mid); }
}

Question 1: Binary Search in RAM [4pt]
Let 𝑇 (𝑁) be the runtime of the binary search algorithm given above where 𝑁 = data.len():
1. Set up the recurrence relation for 𝑇 (𝑁) (i.e., define T(N) by cases, in terms of itself).
2. Set up the base and recursive cases for a proof by induction that 𝑇 (𝑁) = 𝑂(log2(𝑁))
3. Complete the proof by recursion that 𝑇 (𝑁) = 𝑂(log2(𝑁))

https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W1-Binary

Answer

𝑇 (𝑁) = {
𝑂(1) if 𝑁=1 or record found

𝑂(1)+𝑇(𝑁
2) otherwise

—

Inductive Hypothesis: 𝑇 (𝑁) = 𝑂(log2(𝑁))

Base Case: 𝑇 (2) = 𝑂(log2(2))

(we start with N = 2 because log2(1) = 0)

Recursive Case: , then 𝑇 (𝑁) = 𝑂(log2(𝑁
2))

• Precondition: 𝑇(𝑁
2) = 𝑂(log2(𝑁

2))
• Proof Goal: 𝑇 (𝑁) = 𝑂(log2(𝑁))

—

Is it the case that… 𝑇 (2) = 𝑂(log2(2)) ∃𝑐 > 0 : 𝑇 (2) ≤ 𝑐 ⋅ log2(2)
∃𝑐 > 0 : 𝑇 (2) ≤ 𝑐 ⋅ 1
∃𝑐 > 0 : 1 + 𝑇(1) ≤ 𝑐 ⋅ 1
∃𝑐 > 0 : 1 + 1 ≤ 𝑐 ⋅ 1
∃𝑐 > 0 : 2 ≤ 𝑐

This statement is true for any 𝑐 ≥ 2, so the initial statement must be true.

—

Is it the case that… 𝑇 (𝑁) = 𝑂(log2(𝑁))
∃𝑐 > 0 : 𝑇 (𝑁) = 𝑐 ⋅ log2(𝑁)
∃𝑐 > 0 : 1 + 𝑇(𝑁

2) = 𝑐 ⋅ log2(𝑁)

Given the precondition, we can replace 𝑇(𝑁
2) = 𝑐 ⋅ log2(𝑁

2)
∃𝑐 > 0 : 1 + 𝑐 ⋅ log2(𝑁

2) = 𝑐 ⋅ log2(𝑁)
∃𝑐 > 0 : 1 + 𝑐 ⋅ log2(𝑁) − log2(2) = 𝑐 ⋅ log2(𝑁)
∃𝑐 > 0 : 1 + 𝑐 ⋅ log2(𝑁) − 1 = 𝑐 ⋅ log2(𝑁)
∃𝑐 > 0 : 𝑐 ⋅ log2(𝑁) = 𝑐 ⋅ log2(𝑁)

This statement is true for any value of 𝑐, so the initial statement must be true.

—

The proof holds for any 𝑐 ≥ 2 and 𝑁 ≥ 2

Question 2: Binary Search in EM [4pt]
Assume that:
• data is initially stored in external memory (i.e., on disk), as it is in P1.
• Each disk page stores 𝑃 u32 values.

Let 𝐼(𝑁) be the number of page reads (i.e., the IO Complexity) of the binary search algorithm given
above, where 𝑁 is defined as above.
1. Set up the recurrence relation for 𝐼(𝑁).
2. Set up the base and recursive cases for a proof by induction that 𝐼(𝑁) = 𝑂(log2(𝑁))

3. Complete the proof by recursion that 𝐼(𝑁) = 𝑂(log2(𝑁))

Answer

In the worst case, data[...] represents one disk read. The recurrence relation is:

𝐼(𝑁) = {
𝑂(1) if 𝑁=1 or record found

𝑂(1)+𝐼(𝑁
2) otherwise

Note that this is exactly the same recurrence relation as part 1. The rest of the
setup is identical. Since the goal is to prove an upper bound, proving it for the
worst case is sufficient to prove it for a better case (e.g., with caching).

If we cache pages (of size 𝑃), the last 𝑂(log2(𝑃)) = 𝑂(1) reads will go to the
same page, changing the recurrence relation changes only slightly:
𝐼(𝑁) = {

𝑂(1) if 𝑁< log2(𝑃) or record found

𝑂(1)+𝐼(𝑁
2) otherwise

 This is a legitimate approach; the proof

differs only in the use of log2(𝑃) as a base case.

ISAM Index
Remember the ISAM index structure we discussed in class? For 𝑁 = data.len() records, and 𝑃 u32
values per page, the index is a tree built as follows:
• The 1st level contains 𝑃 u32 values on 1 page, taken at uniform intervals from data
• The 2nd level contains 𝑃 2 u32 values on 𝑃 pages taken at uniform intervals from data
• …
• The ith level contains 𝑃 𝑖 u32 values on 𝑃 𝑖−1 pages, taken at uniform intervals from data
• …
• The last level contains all of data.

To find a value (let’s call this isam_find):
1. We do a binary search on the 1st level page. Say the value is between the 𝑖 and 𝑖 + 1th elements

on the 1st level page (or simply greater than the 𝑖th element if 𝑖 = 𝑃 − 1).
2. We do a binary search on the 𝑖th page of the 2nd level. Say the value is between the 𝑗 and 𝑗 + 1th

elements on the 𝑖th 2nd level page (or greater than the 𝑗th element if 𝑗 = 𝑃 − 1)
3. Repeat the process, descending levels until we identify the specific page of data.

If you prefer code, this algorithm is summarized as follows:

fun isam_find(target: u32, data: ISAM) -> Option<usize>
 { isam_find(target, data, 0, 0); }
fun isam_find(target: u32, data: ISAM, level: u32, page: usize) -> Option<usize>
{
 let current_page: Vec<u32> = data.get_page(level, page);
 let position = binary_search(target, current_page);
 if(level >= data.depth())
 {
 return page * data.page_size() + position;
 }
 else
 {
 return isam_find(target, data, level+1, page * data.page_size() + position)

 }
}

Question 3: ISAM Index in EM [4pt]
Assume that you have an ISAM index structure, as defined above, stored on disk. Let 𝐼ISAM(𝑁, 𝑃) be
the number of page reads (i.e., the IO Complexity) of the isam_find algorithm defined above.

1. Draw the recurrence diagram¹
2. Use the recurrence diagram to make a guess about the asymptotic bound on 𝐼ISAM(𝑁, 𝑃).
3. Set up the recurrence relation for 𝐼ISAM(𝑁, 𝑃) given the bound you guessed above.
4. Complete the proof by recursion for the bound you guessed on 𝐼ISAM(𝑁, 𝑃).

¹e.g., see https://cse.buffalo.edu/courses/cse250/2023-fa/slides/lec12-c.pdf, slide 5

Answer

Inductive Hypothesis: 𝐼ISAM(𝑁,𝑃) = log𝐵(𝑁)

—

𝐼ISAM(𝑁,𝑃) = {
1 if 𝑁≤𝑃
1+𝐼ISAM(𝑁

2 ,𝑃) otherwise

—

The proof is identical to part 1, excepting that the base case is 𝑁 = 𝑃

Challenge Question [no points]
Assume you have an on-disk array of records in sorted order. What is the IO complexity of
building an ISAM index, and what is an algorithm that achieves this bound.

https://cse.buffalo.edu/courses/cse250/2023-fa/slides/lec12-c.pdf

Answer

The following simplified algorithm achieves the complexity bound. An algorithm
with a better constant factor exists, but is less concise.

Assume we have the size of the array to start. If we don’t, it can be obtained in
O(N) IOs.

Maintain log𝑃(𝑁) in-memory buffered directory pages, one for each level of the
tree.

Scan through each page of the on-disk array in-order. Append the first key on the
page to the last directory page in the buffer. If the directory page fills up:
1. Write the directory page to disk.
2. Clear the buffered directory page.
3. Direct the next key write one level up in the tree.

fn build_isam(data: FileArray, index: ISAM)
{
 let mut buffer = vec![DirectoryPage::alloc();
ceil(log_2(data.len()))]
 let mut level = buffer.len()-1;
 for page in data
 {
 buffer[level].append(page[0])
 if buffer[level].is_full() {
 index.append_directory_page(buffer[level], level)
 level -= 1
 } else {
 level = buffer.len()-1;
 }
 }
}

This is an example of a read-once algorithm. Each page is read exactly once, and
every page of the ISAM index (of which there are 𝑂(𝑁)) is written exactly once.

	W1: RAM vs EM Algorithms
	Submission
	Binary Search
	Question 1: Binary Search in RAM [4pt]

	Answer
	Question 2: Binary Search in EM [4pt]

	Answer
	ISAM Index
	Question 3: ISAM Index in EM [4pt]

	Answer
	Challenge Question [no points]

	Answer

