
W3: Join Algorithm Performance
• Due: April 28; 11:59 PM
• Summary: 4 parts, for a total of 12 points.
• Submission: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W3-Join-Algorithm-

Performance

Submission
Only PDF-formatted files will be accepted by autolab.
• You may typeset your submission in LaTeX, Typst, or a similar tool.
• You may use a word processor to prepare your submission, but you must export the document to

PDF before submitting.

Note that the instructor must be able to read your answer. Submissions that are unintelligible will
receive no points.

Overview
Database systems frequently implement a range of different join algorithms to cope with different
situations. In this assignment, you will

Documentation
Your documentation should include:
• An overview of your experimental setup.
• A set of hypotheses for when each join algorithm is preferable.
• Experiments supporting (or rejecting) your initial hypothesis.

Part 1: Hypothesis Generation [3pt; 1 task]
You implemented three join algorithms (and the assignment came packaged with a fourth):
1. Nested Loop Join
2. Block Nested Loop Join (parameter: Block Size)
3. On-Disk (2-pass) Hash Join (parameter: Number of Partitions)
4. In-Memory (1-pass) Hash Join

Task: Review these algorithms and develop a set of hypothesis, for each algorithm, stating under
what conditions the algorithm is the ‘best’ (and why). For those algorithms that include parameters,
state how the parameter is to be selected.

In addressing these questions, you may wish to consider properties including:
• The algorithm’s runtime complexity.
• The algorithm’s memory complexity.
• The algorithm’s IO complexity.
• The algorithm’s capabilities (e.g., the join condition)
• Features of the data (e.g., size, number of rows)
• Features of the computer (e.g., memory, disk type)

Part 2: Experimental Setup [3pt; 1 task]
Experimental outcomes can depend heavily on the environment in which the experiment is
performed. For example, AMD and Intel CPUs adopt very different memory management models.
Specific CPU models (e.g., the Intel P5) have hardware glitches that can break experiments. Different
operating systems adopt different disk caching and virtual memory policies.

https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W3-Join-Algorithm-Performance
https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/W3-Join-Algorithm-Performance


All of this falls under the heading of “Reproducibility.” To ensure that others can re-create your
experiments, and that inconsistencies can be properly attributed, you need to properly document the
context(s) in which you conducted the experiment.

Task: Your write-up should include a roughly 2 paragraph summary of the experimental setup,
including, in particular:

• Details of the hardware you’re running the experiment on
• CPU model (Intel, AMD, ARM; What specific CPU model)

• On linux, you can get this information by running cat /proc/cpuinfo (the model name field)
• RAM (Amount)

• On linux, you can get the total memory information by running cat /proc/meminfo
• Disk (eMMC, SSD, or HDD)

• Details of the software you’re using
• Operating System (Windows, Linux, MacOS, BeOS; Version/Kernel Revision)

• On Linux, you can get this information by running cat /proc/version (The kernel version
will be at the front. e.g., Linux version 6.6.10-76060610-generic)

• Compiler Version
• On most platforms you can get this information by running rustc --version

• Scripting tools used to automate the testing process
• Details of general experimental procedure

• Did you test Hot or Cold performance? (see “Hot vs Cold Systems” below)
• How did you account for mechanical differences between the systems?

• e.g., Block nested loop join supports arbitrary tests between tuples, while hash join supports
only equality tests between tuples.

• Details of where to find your experimental code
• You may use the P3 github repository for this; Provide a link.

Part 3: Experimental Design [4pt; 2 tasks]
Design one or more experiments to assess whether each of your hypotheses from part 1 are correct.

A good experimental design considers a range of variables. For analyzing a join between tables R
and S, these can include (but are not limited to):
1. The number of records in R and S
2. The size of each record in R and S
3. The join condition between R and S.
4. How many records in S (resp. R) does each record in R (r. S) join with? (this is known as the ‘Fan-

out’ of the join)
5. Is there a skew in the number of records that any given record in R (resp. S) joins with (e.g., some

records join with a large number of other records)
6. The runtime of the algorithm
7. The memory use of the algorithm

Task 1 For each experiment you plan to conduct, list all variables you plan to consider, and for each
identify whether the variable will be:
• A Control Variable (held constant); Indicate what value you will be holding the variable constant

at, and how you plan to do so.
• A Independent Variable (varied); Indicate the range of values you will be exploring.
• A Dependent Variable (measured); Indicate how you will measure the variable.

Task 2: For each hypothesis from part 1, state what effects you would expect to see in the
experimental results if your hypothesis is correct.



See “Experimental Design,” below for further guidance.

Part 4: Performance Evaluation [2pt; 1 task]
Task: Conduct the experiments you developed in Part 3 and provide the results as a set of plots and
brief summary text.

Experimental Design
Measuring Runtime
Good experimental practice is to isolate the component being evaluated to the greatest extent
possible. For example, if you use a python script to test runtime by running the binary_search or
bplus_tree binaries directly, your measurements will include overheads from launching the binary
(which is often far more expensive than just doing a single lookup).

Advice: For this project, to measure time directly in Rust. For example you can use the Rust
std::time::Instant struct, and in particular Instant::now() to measure the time:

use std::time::Instant

let start = Instant::now()
run_your_test()
let end = Instant::now()
let runtime = (end - start).as_secs_f32()

Measuring Short Times
Most time measurements are at least a little noisy. When the thing you’re measuring is sufficiently
fast, the noise may dominate the runtime you measure. Worse, you may end up with mostly zero
runtimes, as the timer’s increment is coarser than the experiment.

Advice: If the time you’re measuring is short, consider running a large number of trials of the
experiment (e.g., so that all of the trials together take at least 1s). Measure the total time to run all
the trials, and then divide by the number of trials to get the average time per trial.

Error Bars
Experimental results can be noisy: Perhaps you’re watching a video while you run your experiments
(don’t do this, btw); Perhaps you’re unlucky and the system picks the exact instant that you run
your test to do some system maintenance task. Alternatively, perhaps your data structure has
random behavior that can significantly affect its performance on a case-by-case basis.

In addition to reporting the measured runtime, you should also report how ‘variable’ your
measurements are, typically by performing the experiment multiple times, and then reporting the
mean and variance of the set of experiments. Note: This is in on top of running the experiment
multiple times if you’re trying to measure a short time.

Advice: Run the experiment multiple times (5 or 10 is my usual rule of thumb) and report the mean
and variance of the trials.

Generating Data/Workloads
The cornerstone of a good evaluation is a carefully thought-out workload. This includes both the
base data that you use to populate your data structures, as well as the workloads (i.e., which keys do
you look up)?

Advice: Think through a few questions when designing your experiment:
• How big should the dataset(s) you use be?

https://doc.rust-lang.org/std/time/struct.Instant.html


• How are you generating the test workload (e.g., which keys are you looking up)?
• Are you looking exclusively for keys that are present, or are you looking for any key?

• If the latter, what is the expected ratio of keys that are/are not present.

Hot vs Cold Systems
A common source of noise in experimental evaluations comes from caches in the system, where the
system itself tries to optimize away (using caches) the thing that you’re testing. For example, most
operating systems and language runtimes will cache disk accesses. This is great for users, but makes
it hard to properly attribute performance improvements. For example, the same test may run
substantially faster just by running it a second time.

As a result, typically evaluations are performed after resetting as much of the system as possible
(termed a ‘cold cache’ experiment), or by only starting measurement after the system has already
been running for a period (termed a ‘hot cache’ experiment).

You’ll never get a fully cold cache, but you can often get a reasonable approximation by restarting
the binary. e.g., you can assume that every time you call cargo test or cargo run, the cache will be
cleared (flushed).

To get a hot cache, it’s common to set aside a portion of the workload (the specific amount varies) as
a ‘burn-in’ workload; start measurement after the burn-in workload completes.

Advice: In the write-up, clearly indicate whether you are conducting hot- or cold-cache experiments
(or both). For cold-cache experiments, clearly indicate the steps you take to reset the cache. For hot-
cache experiments, clearly indicate the steps you take to warm up the cache.


	W3: Join Algorithm Performance
	Submission

	Overview
	Documentation
	Part 1: Hypothesis Generation [3pt; 1 task]
	Part 2: Experimental Setup [3pt; 1 task]
	Part 3: Experimental Design [4pt; 2 tasks]
	Part 4: Performance Evaluation [2pt; 1 task]

	Experimental Design
	Measuring Runtime
	Measuring Short Times
	Error Bars
	Generating Data/Workloads
	Hot vs Cold Systems


