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SummarizingandMining Skewed Data Streams

Graham Cormode S. Muthukrishnah

Abstract financial time series [52], processing high-volume scientific

Many applications generate massive data streams. Sifgasurements [30], detecting communities in communica-
marizing such massive data requires fast, small space al$f? 9raphs [7] and others.
rithms to support post-hoc queries and mining. Animportant There are typically two aspects to analyzing data
observation is that such streams are rarely uniform, and ref§¢ams. The first isummarizinglata streams for post-hoc
data sources typically exhibit significant skewness. Thed¢eries. Data stream methods useyaopsigo summarize
are well modeled by Zipf distributions, which are charactef® data stream on the fly. “Synopsis” means a small space
ized by a parametet, that captures the amount of skew. representation of the data stream that can be rapidly updated
We present a data stream summary that can answer pfhihe data stream unravels; typical synopses are samples and
queries withe accuracy and show that the space needefgtches. The second aspect of analyzing dat_a streams is the
is only O(e~min{1.1/z}) " This is the firsto(1/e) space YPe ofque_nes that are supported, whether using synopses or
algorithm for this problem, and we show it is essentiaIW'thOUt- Since many of these data stream applications tend
tight for skewed distributions. We show that the same dd€aPe about monitoring data sources say for adverse events
structure can also estimate tfig norm of the stream in such as intrusion detection, fraudulent communities, etc., an

o(1/¢2) space forz > 1, anotrer improvement over the €ssential set of problems are of the datiming genre. For
existing2(1/22) methods. example, how to find heavy hitters or frequent items, large
We support our theoretical results with an experimenf@langes and evolving trends, or perform clustering and sim-
study over a large variety of real and synthetic data. \ARrity searching, decision tree classification, regression and
show that significant skew is present in both textual aRéher statistical analyses. See the ensemble of websites for
telecommunication data. Our methods give strong accurdgpiect descriptions [41, 26, 48, 1, 15, 28, 45], bibliogra-
significantly better than other methods, and behave exadfjfes [50], tutorials [20, 34], surveys [5, 24, 44] in addition
in line with their analytic bounds. to'a number of special issues in journals, workshops, etc.
data stream analysis, data mining, Zipf distribution, e study both summarization and mining problems
with data streams. Our work here was initiated by our
experience with IP traffic analysis using Gigascope [15],
1 Introduction AT&T’s IP traffic analysis system, as well as our work on
. . , mining text streams [40]. Our observation was that data
A number of applications—real-time IP traffic analy- : S .
. : . . streams involved distributions that were not arbitrary, but
sis, managing web clicks and crawls, sensor readlngas

email/SMS/blog and other text sources—are instances Ot;ner typically quiteskewed. For example, if one studied

. . -~ the distribution of the IP addresses that used a link of the

massive datatreams. Here new data arrives very rapid P
ackbone network or the distribution of flows or bytes sent

and often we do not have the space to store all the data. S -

; . each IP address, the distribution was zipfian, fractal

Hence, managing such streams needs algorithmic methods

: or multi-fractal. This has been studied in detail in [33].

that supporfast updatesand have amall footprintof space. . . S :
! o — " Similarly, the word frequencies in natural text is well known
See [17] for a detailed motivation for these constraints jn T T .
_ i - L t0 be zipfian; word frequencies in text streams such as email
the context of IP traffic analysis. Similar motivation can be : S
L . .. or blogs tend to be heavy-tailed [36]. In nature, zipfian
found in high performance web data analysis [25], minin

email streams [40], aggregating sensor data [39], anal ZFﬁstributions (also known as power laws) abound in citation
» aggregating ' YZ§i€ributions to web accesses for different sites, file sizes

transferred over the Internet, etc [8].
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asthe Pareto distribution, and is essentially identical to so- is used as a subroutine in counting subgraphs in massive
called “power-laws” [2] with transformation of parameters. web graphs in [6], and for quantiles, histograms and
We work in well-established data stream algorithm model other statistical descriptors of the data stream [21].
and studyprobabilistic, approximatelgorithms, that is al-
gorithms that provide approxmatlon with probability of Our synopsis above is a sketch, ie., inner products of
success at leadt— §. As is usual, we study the trade-off, . A . .

the input distribution with certain random vectors. There are

between space used by the_ SYnopsis aqd the.t|me ber rr]1%¥1y known sketches [4, 10, 23, 49, 13]. Here, we adopt the
data update versus the quality of estimations givea bpd

: L Count-Min sketch [13] which dominates all other sketches
0. Ourtheoretical contributionsire as follows. ; .
in terms of space and update time needed to guarantee
1. We present a synopsis that uses spagdez| accuracy. Our main theoretical contribution here is to
O(e~min{1.1/z} 1n1/5) for (e,5) point queries on analyzeestimation methods based on this sketch and prove
z-skewed data streams. improved bounds on space usage without compromising any
of the other parameters, ie., update time and accuracy. Our

first known o(1/) space algorithm known foany algorithms are essentiallybliviousof the skew valuez but
synopsis—sample or sketch based—known for sugh' ana_lysis is sk_ew-aware. We can approach this in two
problems. This is of interest since tia(1 /<) space ways: given a desired error bouadind bound on the skew

bound has long been taken as the gold-standard tafje e can allocate space to the sketch as a function of these
for data stream algorithm design rE);arameters; alternatively, we can allocate a fixed amount of

space for the sketch, and based on the observed skgiwe
We can use this synopsis for a variety of mining taskgnt bounds on the worst case error as a function.ofn
such as finding heavy-hitters, frequent items for assogg |atter case irrespective of the data distribution, a simple
ation rule mining, finding significant changes from ongnaysis gives a universal bounds on the error, and using the
time to another, significant differences between diffegyaw of the distribution we can give tighter bounds.
ent streams, estimating wavelet decomposition of data oy results give additional evidence that CM sketch is
stream, and so on. In all these cases, our methQg$satile and suited for a variety of problems under a range
improve theO(1/¢) factor in previously known algo- of gata distributions. This, coupled with their proven perfor-
rithms toO (¢~ ™{1:1/#}) for space usage. mance within the operational AT&T’s IP traffic analysis tool

2. We prove a matching lower bound, that is, we show th(a-gaSCOpe [11] at the rate of OC48 l,ink:?" makes our meth-
any (=, O(1)) algorithm for point queries needs at leafds for _sl_<ewed data ;tream summarization and mining suit-
Q(e~min{11/2}) space. gbly eff!ment for real-life data stream management systems

in practice.

3. We extend our synopsis to estimate the second fre- Our experimental contributiongre as follows. We
guency moment, ie., the sum of squares of the frequeonsider large streams of both real and synthetic data. We
cies of items in the data stream. It is equivalently (th@bserve that all the real data we consider, from IP network
square of) thel., norm of the vector of frequencies ofand phone call data to “blogs” and Shakespeare’s plays,
items in the data stream. The space use@@s%) exhibit significant skew to varying degrees, and our methods
for1/2 < e < 1andO(sl_+%)forz > 1. capitalize on this. Not only do they outperform pther

) . methods, but they behave closely in accordance with our
For z > 1/2, the space used i8(1/e?); all previ- giated bounds. The correlation is sufficiently good that
ously known algorithms in contrast use at le@st / ?2) not only can we compare our method to that predicted by
space. Our bound above is additionally interesting bgyy theory, but also we can use our results to compute the
cause the synopsis methods foynorm are implemen- gye\wness of the data with high accuracy. Our conclusion is
tations of the Johnson-Lindenstrauss lemma [29]. Theyt py understanding and building skew into our model of
lemma states that a set of vectors in Euclidean spagg, streams, we can realize much stronger results, both in

o ;
can each be replaced by a vectorii;; )-dimensional (orms of theoretical analysis and practical performance.
spaceandinter-vector distances are preserved up to a

(1+¢) factor with high probability. This dependency on 1 Map.

€1s tlghtsmcealowerbognd_éf(_g%) hasrecentlybeen \ve give preliminaries in Section 2, then define the CM
shown [51] for general distributions. Our results shogyetch in Section 3. We discuss skewed distributions and
that for skewed data, this lower bound can be avoidegls|ated work in Section 4. Section 5 gives our results for
We can use this result for a variety of mining task&oint Queries, and Section 6 those foy norm estimation.
For example, anomaly detection methods in IP traff@ur experimental study on a mixture of real and synthetic
analysis use the second frequency moment [35]. Alsoddta is reported in Section 7.

For = > 1, the space used is(1/¢); this is the
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2 Model and Queries ful in anomaly detection [35], counting triangles in mas-

We consider a vectos, which is presented in an implicit, Sive Web graphs in [6], and for quantiles [23], wavelets [22],

current state at timeis a(t) = [a1(t),...ai(t),...a,(t)). Streéam. They are also useful for partitioning data stream

For convenience, we shall usually dro@nd refer only to into multiple zones of inter(_ast [16].. There is a maturi.ng
the current state of the vector. Initially, is the zero vector, theory of data stream algorithms with many such applica-

0, s0a;(0) is 0 for all i. Updates to individual entries of thefions. Rather than list these applications and show the im-

vector are presented as a stream of pairs. fiineipdate is Provements obtained by using our methods we focus on these
(iy, c;), meaning that primary queries and demonstrate the nature of our improve-

ments in depth.
Qi (t) = Qi (t - 1) +o
Qa;’ (t) = a; (t - ].) 4 7é it 3 The CM Sketch
Many sketches are known [4, 10, 49, 13]. Here, we briefly re-

crease and decrease with updates, each 0. Our results cap the data structure that is used throughout. The important
all generalize to the case whergs can be less than 0, withProperty is that, given the parameters of the sketch structure,

small factor increases in space, but we omit details of thd@& UPdate procedure is the same no matter what the ultimate

extensions for simplicity of exposition. query operations are. .
It is easy to see how this model maps to the motivating | Ne CM sketch is simply an array of counters of width

data stream applications. For example, for the IP traffic@nd depthi, count(L, 1].. . count|d, w]. Each entry of the
case, each new IP packet with source IP addsemsd size &1ay IS initially zero. Additionallyd hash functions

of the packetp may .be seen as updatings] «— a[s] + p hi...hg:{l...n} = {1.. . w}

to count the total size of flows from source IP address

Similarly, in the text streaming application, when new texe chosen uniformly at random from a pairwise-
input such as email arrives, we can parse it into words andependent family. Once andd are chosen, the space
track word usage frequency in order to track frequent argfuired is fixed as thed counters and thé hash func-
recently popular (“bursty”) words, to attribute authorshifions (which can each be represented (xil) machine
based on usage patterns, etc. Here, each new text ingoitds [43]).

updates many new[w|'s for different words or phrases | 4ote and Query Procedure. When an updatéiy, ;)

n the input. See [44] fgr more examp'les.. We cons!dgr oy rives, meaning that item;, is updated by a quantity of
particular types of queries for summarization and mining. ¢,. thene, is added to one count in each row: the counter is

determined by:;. Formally, we set

We assume throughout that although values:pin-

e Point query. A point query is, given, to return an es-
timate ofa;. Our goal is to give(e, §) approximations:  / J <d: count[j, hj(ir)] < count[j, h;(ir)] + ct
the answer should be correct to within additive error of =~ ™
ellal|; with probability at least — §. We will analyze The query procedure is similar: given a query point
the space required as a functionsoénd§ required to return min, <;<q count|h, h;(i)] as the estimate. In [13],
achieve this. it was shown that the error for point queries, irrespective

of the distribution, isz|lal|y = e/wlal|; with probability

» Second Frequency Moment andZ, Norm The L, | _ 5 _ 1 _ .~d Hence, in order to get approximation
norm of a vector,|allz, is defined ag3”; af)=. The \yih probability 1 — & for point queries, we need — e/e
goalis to estimate this within additive error eflallz 494 — log(1/5).
(equivalently, with relative error + ) with probability
at leastl — 4. The second frequency moment in OU§  gyew in Data Stream Distributions

model is the square of thi, norm, ||a/|3. . . C
g e lallz In almost every practical setting, the distribution of fre-

These two queries appear to be abstract, but they hauencies of different items displays some amount of skew.
many concrete applications in a number of mining problemh§roughout, we will use the popular Zipf distribution to
on data streams. Point queries can be used for estimaﬂiﬂyjd skewed distributions. The Zipf distribution accurately
frequent items for association rule mining [42], heavy higaptures a large number of natural distributions. It was intro-
ters [12], significant differences [10] and significant relduced in the context of linguistics, where it was observed that
ative changes [14], etc. ThB, norm estimation is use-the frequency of théth most commonly used word in a lan-

guage was approximately proportionalltt [53]. Zipf dis-
" TTheheary hitters problem is to find all such thata; > ||al|,/k for tributions are equivalent to Pareto distributions and power-
some constari. laws [2].
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Formally, a Zipf distribution with parameter has the mining problems in data streams with skew to give much im-
property thatf;, the (relative) frequency of théh most proved bounds and performance.

frequentitem is given by; = 52, wherec. is an appropriate Zipf tail bounds. For our analysis, we will divide up

scaling constant. We will consider distributions over ”}%e range of the parameterinto three regions. We refer
range[l...U], whereU is the range, or universe size. Fo g P g )

T . ol < 2 < 1asmodente skew, and < z asskewed.
the skewed distributions we consider, we can often allow 2 . 1 . T
) ) . .. Otherwise, wheny < =, wewill say that the distribution has
to beco. ¢, is determined by (andU) since for a probability . 2
S U : light skew.
distribution we must have,_, f; = 1. Given a vectom . : .
. A iy : C The following facts result from bounding the discrete
whose entries are distributed according to a Zipf dlstrlbutlo(glIStribution by its Continuous counterpart
the count of theth most frequent item is simplja || f;. y part
Many skewed distributions are well captured by Zigfa\ct 4.1 Forz>1.1- L <e <2 1.
distributions with appropriate parameters. Natural phenom- =0T
ena, such as sizes of cities, distribution of income, soclcT 4.2. For z > 1,
networks and word frequency can all be modeled with Zipf

distributions. Even the number of citations of papers demon- e k% v c.(k—1)—2
strates a highly skewed Zipf distribution [47]. More relevant -1 < Z fi= 2 —1
to our study of large data streams, web page accesses for i=k

different sites have been observed to obey a skewed Zipf gigz.1 4 3.

tribution with parameter between 0.65 and 0.8. [9]. The

“depth” to which surfers investigate websites is also captured

by a Zipf distribution, with parameter 1.5 [27]. Files com-

municated over the Internet display Zipf distribution in a va-

riety of ways: transmission times are Zipf with parameter i T

approximately 1.2; the size of files requested, transmitted, OUr @nalyes generalize to when the data distribution is

and available for download are all Zipf with parameters rdominated by zipfian or more generally, what we afif-

spectively measured as 1.16, 1.06 and 1.06 [8]. FTP traulﬂie> d'ft_:c'k:ﬁgotgﬁ: aafltgrlsktr:g?g;:snt I';ielrg;“t}(;;mhe%ﬁtagerfgst
; ; ; z i i i wei

sizes was estimated to hax/er_w the range 0.9 to 1.1. More”, ~ of the total weight (one could also allow scaling by

strongly, such skewed behavior of requests appears not dhl . X "

over individual addresses but also when grouped into subrfetsonstant, eg, the tail has weight at most —*; such

or larger networks [33], meaning that the skewed distributigﬁtensmns, fO,IIOW easily). Although we statg results in this
is self-similar (multi-fractal). paper for zipfian data, with a few more technical details, the

results hold for Zipf-like distributions as well.

Forz>%,

C§k172z <2U:f2 _ Cg(k_l)kzz
2:-1 ~ &0 T 221

Related work on Mining Skewed Streams. A distinguish-

ing element of our work is to bring the skew of the data in® Point Queries
the analysis of summarizing and mining data whereas m

of the extant work deals with arbitrary distributions (With-'he
some exceptions). For the heavy hitters problem Manku afjdh setch in the presence of skewed distributions is the
Motwani [42] preslented the "lossy counting” algorithm thaj, ey ation that items with large counts can cause our esti-
requires space)(: loge|al|1) to give the same accuracyyies 1o be poor if they collide with other items in the array
bounds as our results in general; but under the assumpipR, nters. In a skewed distribution a few items consume a
that each new item is drawn from alflxed probability distrjz g6 fraction of the total count. When estimating the count
bution, then the space is (expect€xl); ) and theerror guar- o 4y item, if none of these large items collide with it un-
anteed. Our results are dual to this, given guaranteed SpgGeihe hash functions, then we can argue that the estimates

bounds and expected error bounds; however, with more i be better than they — 1/ bound given by the generic
formation about the distribution, our bounds are depend%’ﬂéument in [13].

on skewz, being much better for moderate to large skew, but

never worse. For the top problem, [10] slpecifigally stud- THEOREMS5.1. For a Zipf distribution with parameter
ied Zipfian data and showed that fer> 3, O(Z;) space ., the space required to answer point queries with er-
suffices. For large skew, our methods improve this boungy ¢lall; with probability at leastl — § is given by

to O(g). Usingdata skew is not uncommon in database rey(e—min{l1/2} In1/4)
search, but only recently there are examples of data mining

in presence of skew in massive data such as [18] of analyzPmof. For z < 1, the best results follow from analysis
trading anomalies. Our work differs from previous works hip [13]. Forz > 1, we use the same estimation technique to
being a systematic algorithmic study of summarization aneturn an estimate far; asa; = min; count[h;(4)], but give

Upper Bounds
crucial insight for giving better bounds for the Count-
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anew analysis. The estimate returasplus some additional of BJi] by reporting 1 if the estimated value of is above
“error” coming from the counts of items that collide with ¢ N, and 0 otherwise. Therefore, the space used must be at
under the hash functions. We split the error in our estimd&stﬁ(%) bits.
into two parts: (i) collisions with some of the largest items The sameidea applies when we restrict ourselves to
and (ii) noise from the non-heavy items. If the sketch h@#f distributions. However, the counts must follow the Zipf
width w, then letk = w/3. With constant probabilityg() pattern. We again encode a bitstriBgthis time using thé:
over the choice of hash functions, none of théneaviest largest counts from the Zipf distribution. Now we sgt =
items collide with the point we are testing in any given rowf; N (for some suitably large value df) if B[i] = 1, else
The expectation of the estimate fois we setaqg; 11 = f; N if B[i] = 0. This time, we can recover
the firstk bits of B provided thatf, > 2¢: if f; is less than
this, then the error in approximation does not allow us to
distinguish this value from zero. Using the boundsfoifor
skewed Zipf distributions, we havg = 7= > 2¢. To get the
This uses Fact 4.2 from Section 4 to bound the weighést lower bound, we choogeas large as possible subject to
of the tail of the Zipf dilstri;Jution af/ter thé largest items these constraints, Solving fér we findk = %1/21/2. The
are removed. Setting'~*/w = ¢/3 and recalling that e 1)z _
w — 3k leads us to choose — 3k — 3(%)1/,2_ We can term < is boundedbelow by (z — 1)/2for 1 < z 1§1/2z,

now apply the Markov inequality to show that the error @1d may be treated as a constant. THus fixed asc;
1 _ 1 bitsof B for some constant This results in the stated space

bounded by ||a||; with probability at least — 1 — 3 = 1. ! _
This appliesto each estimate; since we take the minimum 8PUNds by again appealing to the Index problem. U]

all the estimates, then this probability is amplifiedite %d
over thed separate estimations.

U
1
a; + — Z az < a; + |lal|1k' % /w. (5.1)
r=k+1,x#1

5.3 An example application: Top-k items
As mentioned earlier, supporting point queries post-hoc on
data stream synopsis has many applications. Here, we focus

We now present lower bounds for the space required 90 disggmﬁoznef;thig}‘ a variety of management and
answer point queries, which shows that our analysis above query y 9

is asymptotically tight (since [13] shows the CM sketch dal glyssrset;lggiésv\f%g?drt]hert]opt)\;vﬂerrke Xarnf]if’)]Ig,ﬂ:I n? theltgg W
structure gives error over general distributions Witﬁ(%) users ot ba on a network, o €op €

terms in a message stream. Such queries can be answered
space). ) ) . )

by point queries, by tracking the most frequent items that are
THEOREM 5.2. The space required to answer point querieeen as the stream unravels. We need to choose the parameter
correctly with any constant probability and error at most appropriately: too large, and we will not be able to answer
ellally is Q(s~1) over general distributions, an@(gfl/z) the query with sufficient accuracy, and the results may be
for Zipf distributions with parameter, assumingn = unreliable. When the distribution is skewed, we can apply
Qe min{l1/2}), our above results and give very tight bounds.

To give the correct answer, we need to bound the error

Proof. Our proof relies on a reduction to the Index probler@y cay, (wWhere, here, we use, to denote the frequency of
in communication complexity. There are two players, the kth most frequent item im) instead of|/a||;. Using
and B. A holds a bitstring of lengtt, and is allowed to the above analysis for the expectation of the error in the

send a message t6 who wishes to compute théh bit estimation of any frequency from equation (5.1), we set the

of the bitstring. SinceB is not allowed to communicateexpected error equal tau:

with A, then any protocol to solve this problem, even

probabilistically, require$2(n) bits of communication [37]. lall k' == ellallik™*

We will reduce to this problem by encoding a bitstring w - 9

in such a way that if we could answer point queries with

sufficient accuracy, we could recover bits from the bitstringndsow = O(%) for = > 1. This improves the results

This is sufficient to show a lower bound on the size of the [10], which showed that fo > % O(E%) spacesufiices

data structure required to answer such queries. with a Count sketch. In both cases, occurrencesadncel,
For general distributions, we take a bitstrigl . . . ?15] so there is no dependency emrovided the distribution is

of lengthn = 5 bits, andcreate a set of counts. We seskewed withz > 1. We can set the space basedoand

a; = 2 if B[] = 1. Otherwise, we sei; = 0 otherwise, ¢ without needing to knowt exactly. Further, using a CM

and add to ay. Now, observe that whatever the value/$f Sketch, one can simulate the sketch of [10] by computing

llalls = 1/e. If we can answer point queries with accuracfcount|j, 2i] — count[j,2i — 1]) forall1 < j <d,1 <i <

ella|ly = 1, then we can test any; and determine the valuew/2. The converse is not possible.

5.2 Lower Bounds
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6 SecondFrequency Moment Estimation

The second frequency moment, and the closely related U U U
norm, have been the focus of much study in the data stregpx ;) = Z“? + Z a;a;Pr[h(i) = h(j)] — |lal|?
community. The work of Alon, Matias and Szegedy [4] im1 =1 =1, i

spurred interest in the data stream model of computation.

One of their results was an efficient algorithm to compute 1

2 2
the second frequency moment of a stream of values in spafeé|a||2 + 5(5 § ;a5 — E E aiaj) — [lall3
O(Z). As was observed by the authors of [19], the same i=lj=1,j#i i=1g=1j#i

algorithm also allowed thd., difference of two streams lal? . & U U
to be computed in a very general model. The algorithm < 1(2212- Z fi+( Z 1)?)

w

can also be viewed as a streaming implementation of the i=1  j=m+1 i=m+1
Johnson-Lindenstrauss lemma [29] with limited randomness s U U

and bounded space. The lemma states that a set of vectors in <9 lally (Z fi Z £)
Euclidean space can each be replaced by a vectof i)- s S ey ) ’

dimensionalspace and inter-vector distances are preserved 5 1. )

up to a(1 = ¢) factor with high probability. This dependency < 2|la][ie.m < 2||alfze: (22 — 1)w#

one is essentially tight in terms of the dependency:dior Tow(k-1) T 2(z—1)

general distributions: a lower bound 6 %) hasrecently Thismakes use of the Facts 4.2 and 4.3 to bound the sum
beenshown [51]. This is problematic for applications thasf the tail of the distribution and to relate tig norm to the
require a very fine quality approximation, say = 1% [, norm. Note that, since; = lalif; and||al3 = 3, a2,

or 0.1% error, since the dependency orf means a high we can write|la|3 = ||a||? Y, 2. We can substitute this
space cost. Here, we show how the CM sketch can jhequality, and then use the lower bound of Fact 4.3 to
used to approximate this heavily studied quantity with stroRgurite > f? in terms of z andc,. We set the expected
guarantees of accuracy, and how, for skewed distributiogauared error equal td|a||2/2, which givesw = 0(51%)_

Yy o
the2(<™*) space bounds can be beaten for the first time. We treat the terms polynomial in as effectively constant.

We then apply the Markov inequality, so with proba-
6.1 SkewedData bility 2, X; < 2¢[|alj3. Thisimplies that|a|? < X; <
We_ describe the estimation procedure for fignorm; to (1 + ¢)?||a]|2. Taking the square root of all terms in this
estimate the second frequency moment, we return the SquUaie, 4 ity bounds thé, norm ofa. For each row the prob-
of this value. When the distribution is skewed (2 1), a\bility of this failing to hold is no more thag: 3 for the
there are a few items with high frequency, and so a smgﬁz

h ) h p hati X itemsnot falling in different counters}I from the Markov
method to appro_>(|matet e norm suffices. Thatis, we sim quality. Taking the minimum of these estimates amplifies
compute our estimate of the, norm as

the probability of success tb— %d. O

m}n(Z count[j, k[*)'/* 6.2 Moderate Skew
k For the moderate skew (< 1), and unskewed cases, we
which is minimum of theL, norm of the rows of the sketch.use the CM Sketch data structure to effectively simulate the
We refer to this method as CM sketch proposed by Alon Matias and Szegedy [4]. This
shows the flexibility of the CM Sketch. In order for the re-
THEOREM6.1. This procedure estimates the, norm of sults to be provable, we need to strengthen the hash func-
streams with Zipf skewness parameter 1, with error tions used, from pairwise independent to 4-wise indepen-
bounded by |la|, wheres = O(wf(lzw ), with probability dent. Apart fro.m thls change, the data structure is con-
—d structed and maintained in the same way as before.
atleastl —o=1-7 . Again, letm = w'/?; it remains the case that the
) ~_largest items will not collide, although these contribute a
Proof Letm = w'/?. Then, with constant probability, ingmaler amount to thé, norm. Now, compute the estimate

any row the largestn items fall in different buckets within (denoted CM) of the L, norm for each row by taking the
the CM sketch. This follows from the pairwise independengauare root of

of the hash functions used.
We compute the (squared) error in tfth estimator as Y; = Zgﬁ (countlj, 2k] — count|j, 2k — 1])2.
X; =Y, count[j,i]* — ||al|3. Consider the expectation of
this quantity when the above condition holds, that is, WheTZj5 4], the authors argue that in practice, pairwise or other hash
them largest counts are im distinct buckets: functions will often suffice.
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THEOREM 6.2. With constant probability, the update time is the same as the usual cost for updating
a CM Sketch, which i0(d) = O(In}). Herewe give

2 2
(1 =g)llallz <£Y; < (1 +¢)lalz much improved dependency eron space used for skewed
—(1422) distributions, as summarized in the table below.
fore=w—2 .
Proof. We will define some functions derived from the hash | Valueof z 2<3 |3<z<1[] 1 <z
functions,h, in order to simplify the notation and clarify the | Spaceequired| O(s72) | O(eT ) O(e7+=)
analysis. We defing;(z) = +1if h;(z) = 0 mod 2, and
—1 otherwise. We also defin€ (v) = [h;(z)/2]. 7 Experimental Study
First, we will show that in expectatiol,(Y;) = |lall3. We carried out an extensive experimental analysis of the

Observe that Count Min sketch for point estimation anfd, estimation.

E(Y)) =2, v a9 (2)g; (y)Pri () = h;(y)] We made use of the public implementations of the data struc-

. =2 a:r _||a||2 , . ture available fromhttp://www.cs.rutgers.edu/

using the pairwise independence of the functipfwhich ~_ v /massdal-code-index.html as well as the

follows from the pairwise independencelgt Secondly, we o nt sketch [10] for comparison. The Count sketch can
compute the variance df; as also be used to answer point queries, and has a similar struc-

Var(Y;) = E(YJZ) —E(Y))? ture to the Count-Min sketch, being based around an array of
= (Z;U:/f(Zx,h;(a;):i azgj(2))?)? — lla|l* counters. So in all experiments, the two methods were given
<D vny.2495(0)gi(2)9;(y) g5 (2)avazayas exactly the same amount of space, in each case arranged as

* Pr[p/(v) = h’( ) = h’( ) = h’ (2)] an array of counters with the same dimensions. This should

_ 5 1 — give a fair comparison between the two methods. We refer
B i% ! % Lyze O 2a QPr[h (= ) hiW) to the Count-Min sketch as “CM”, and the Count sketch as
This usiesut)he Z-Vblseyml d@?zenﬁeynce of the functign CCFC” (after the initials of its creators) for brevity. We
to imply 4-wise independence of, and hence to showC.OHS'de.rEd synthetic datasets generated from Zipf distribu-
that products of4 or fewer independent terms in have tions W'th known valu_es of, SO that we C.OU|d compare the
behavior of the algorithm with that predicted by our analy-

expectation zero. . - .
; . . sis. We also considered various real data sets, two data sets
We again argue that, with probability at Iea§t the in each category, text and network data.
m = w'/? largest counts fall into different buckets. Consider ’

the distribution of counts in the CM sketch only for sucl} 1
settings where this event occurs. For such distributions, ﬂwg m
Var(Y;) is bounded as:

Synthetic Data
ade our synthetic data sets by using standard routines to
draw values from a Zipf distribution with specified parameter

Var(Y;) < 4”@”1 @ 2 1 . Each experiment consisted of drawih@ items from a
+ (ZLU mtl 3?2 domain of sizen = 10° and computing the.> norm and all
4||la
< H Hl (2 27 L f? Z] S f2) point queries over this domain. In evaluating the quality of

1;22 our algorithms, we computed the exact solutions to all these

querles and so could compute the error in each result. For
L, norms, we computed the fractional error as the difference

between the estimated and actual value, scaled by the actual
providedwe haves> > 8w . We can take the medianvalue. For simplicity, we worked with, = L2. For

of O(In 5) independentepetitins of the estimatol’; and point queries, we computed the difference between the actual
apply Chernoff bounds in usual way to amplify this. constagilue and the estimate, and scaled by the number of items.
probability of SUCCGSS td — 6. The space required iswe computed the maximum error observed, and the 99.9th

< 8HaH4m1 % Jw = 8||al3w
Settingthisequal to=2||a||3 lets us apply the Chebyshe
bound. This shows thar[|Y; — [la||3| > 2¢l|lal3] < 1

—(1+422)
2

0(51+2z Ini 5) for z > = O percentile of the error (that is, sort the observed errors, and
take the one whose rank i&% N). Since our algorithms
6.3 Light Skew Case and Summary give guaranteed bounds with a small probability of failure,

For the case where < , we observe that by simply takingthis should test how well these bounds are met.

the variance of the CM estlmator over all distributions, then  The first results are shown in Figure 1. These show the
it is directly bounded a¥ar(Y;) < 8|la||3/w. Following effect of fixing the space for algorithms, but varying the
the Chebyshev and Chernoff arguments results in spakewness parameter of the input. Our theory predicts that
bounds ofO(E%). This matches the space requirementie performance of the Count-Min sketch shouldthe 1/s

for the previously best known algorithms fép estimation for z < 1, ande « 1/s* for z > 1. We observe that this

of [4, 13, 49] up to small constant factors. Observe ths¢ems to be borne out in Figure 1(a): the error is roughly flat
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99.9% Error on Zipf data with 27KB space
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Figurel: Testing point estimation on synthetic data
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Figure2: Testing space dependency of point estimation on synthetic data

for 0.5 < z < 1, and then falls off smoothly for larger We 1KB to 1MB. Plotting observed error vs. space on a log-
see that forz > 1 then the observed error is better for CMbg plot should reveal a straight line with slope equal to
than for CCFC, justifying our analysis of the performancez. This is seen clearly in Figure 2(a), where we have
of these algorithms for skewed data sets. For distributigpistted a liney o« x~!2 for comparison. Note that this
with skewz > 2, the observed error is sufficiently small tas a logarithmic scale plot, so the separation between the
be negligible. A similar pattern of behavior is seen when viwo lines is quite significant: CCFC consistently has about
take the maximum observed error, in Figure 1(b). The mdimice as much error. It appears to show a simitar'-2
observation is that for skewed data, the largest error from thependency on size. Although the maximum error is much
CCFC approach can become very high compared to thatadre variable, the same behavior occurs for= 1.6
CM, which is not much greater than in the previous case. (Figure 2(b)), where CCFC has on average 10 times the error

Our theory predicts that, as spacincreases, the errorof CM, an order of magnitude worse. Several data mining
¢ should decrease as ?. We show this to be the caseroblems need to manipulate item counts by summing and
in Figure 2. We plot the observed error when we fix thaubtracting estimated values, so often this very fine accuracy
Zipf parameter, and increase the space for the sketch frismmequired, hence the need to get as good quality estimates

as possible in small space.
For Fy, estimation, the results are less clearcut. We
We do not know why the CCFC algorithm appears to have a "befiaye two methods to use the Count-Min sketch in order to

curve™like behavior as increases. This may be of interest for future__,. -
a‘;;{ysis' VIor a5 Increases.  THIS may imerest for Wi stimate the second frequency moment. The first,{CM
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F2 Estimation with space 27KB Error in F2 Estimation on Zipf(1.6)
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Figure3: Testing spacé., estimation on synthetic data
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Figure4: Results of experiments on text data

which has the best analytic results for> 1, is to sum the 7.2 Text Data

squares of the counters. The second, GCBums the squaresZipf's law was first proposed in the context of linguistics,
of the differences of adjacent counters. In our experimemhi@sed on the observation that the frequency ofithenost

on synthetic data, illustrated in Figure 3, we were not alflequent word in written text seemed to be roughly propor-
to observe a clear difference between the two approachemal to 1/ [53]. So it is fitting that we test our methods
As we increased while keeping the space fixed, we sawn mining textual data. We considered two data sources of
that both methods seem to give about the same error. seemingly very different nature. First, we used the complete
Figure 3 (a), over the different values af CM™ gets lower plays of Shakespeare. This consists of 5SMB of data, totaling
error more often than CM, but there is no clear trend.approximately 1 million words. As a data source, it is quite
Figure 3 (b) shows the effect of increasing the size of thedean’, since words are spelled consistently throughout, and
sketch for data with = 1.6. Our theory predicts thathas been checked by many editors. Our second source of

1422

the error of CM should behave as~ 2 = s 195 and data consisted of a large amount text harvested from we-
CM™* ass— % = s~ 13, We have plotted the first of theseblogs (“blogs”), totaling 1.5GB. This totaled over 100 mil-
on the same graph, since on this data set we can see libswords from a large number of different authors, written
behavior for CM~. The results for CM are much less in colloquial English (and some other languages mixed in),
clear here, however when we examine real data sets we siih no editing, in inconsistent styles and many errors left
see the algorithms performing very closely in line with theincorrected. We did not attempt to clean this data, but ran

predicted behavior. our algorithms on it directly.
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Max Error on Telephone Data F2 Estimation on IP Request Data
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Figure5: Results of experiments on network data

We show some of the results in Figure 4. We do n@t3 Network Data
show all results for space reasons, but they are similar\i® considered two types of data drawn from communication
those we present. On the log-log plot in Figure 4 (a) weetworks: a data set of 1.9 million phone calls, where we
can see a very clear linear gradient with slope approximatéaigcked the called exchange (a range of 1 million values); and
-1.2. This suggests that the Blog data is well-modeled bydata set of Internet requests to 32-bit IP addresses, taken
a Zipf distribution with parameter 1.2. We took the worétom the Internet Traffic Archive [38], LBL-CONN7 [46],
frequencies from this data, and plotted those on a log-ltijaling 800,000 requests. The maximum error on the phone
chart, then computed the line of best fit; its slope wasll data is plotted in Figure 5 (a). Although it is a little
indeed approximately 12. For the Shakespeare datasefjzzier than the corresponding 99.9% error plot, the linear
we measured as 1.2—1.3, implying that Shakespeare hattpendency on the log-log plot can be easily seen. The slope
similar relative frequencies of word usage as a Blog writexf the CM line is -1.16, predicting a skewness parameter
In both cases, we see significant accuracy gains using ©ML.16, while the slope of the CCFC line is around -0.8.
Sketch over CCFC. Again, there is an order of magnitude improvement in the
The linear behavior of the CM estimation in Fig- accuracy of CM over CCFC. For the Internet data, the error
ure 4 (b) is quite striking. For sketch sizes 10KB—1MB, wia point queries implies a skew af= 1.3. This means that
measured a dependencysodiss 1. This implies a corre- the slope forF, estimation should bé.15, which is indeed
sponding value of = 1.3. The same trend is not obvious forwhat we measure on Figure 5 (b) for sketches between 10KB
the CM~ approach, but a best fit line gives the dependenagd 1MB using CM for estimation. The slope of the CM
e o 57985 which corresponds te = 1.2. Recall that in line is less steep, about -0.9 as predicted, although again
both cases, we use the same sketch as the basis of the botihessbserved error is less throughout most of the region of
timation procedures (as well as for point queries). These naterest.
sults show us that using the CMestimation technique (sum
of squares of differences) gives better results than the CM.4  Timing Results
approach (sum of squares). If the data is very skewed,Since the update procedure is essentially the same for every
very fine accuracy is required, then GMshould be used, update, the time cost is not much affected by the nature
since asymptotically it has better bounds, but for this kired the data. We conducted experiments on 1GHz and
of data the CM method is preferable. The important fea2.4GHz processor machines, and observed similar update
ture is that we can make the sketch oblivious to the natyrerformance on each (since the algorithm is essentially
of the data, and only at query time decide which estimatibound by cache/memory access times), of about 2—3 million
technique to use, based on the observed skew. updates per second. By comparison, the implementation of
the CCFC Count Sketch achieves a somewhat slower rate
(40-50% slower), since it requires additional computation
" ZIn orderto get a good fit of real data to a Zipf distribution, one typicallf @ second hash function for ever update. Greater speed can

has to drop the first few readings, and not fit the entire tail. Based be achieved by taking advantage of the natural parallelism
different sections of this chart, we measured Zipf parameters in the rajggerent in sketch data structures.
1.151t0 1.30, and so we conclude that 1.2 is within the bounds of uncertainty.
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8 Conclusions [4]

We

data streams when these streams exhibit a skewed distribu-
. We have given practical algorithms for key post-hoc

tion

have defined the problem of summarizing and mining

analysis problems with strong theoretical bounds(df/<) 5]
ando(1/¢%) where previously known results that did not ex-
ploit skew used spac@(1/¢) andQ(1/s2) respectively. In
experiments, we have shown our CM sketch data structure]
to be a practical and flexible summary: not only does it out-
perform other methods for point queries and give accurate
estimates for., estimation, but it does this based on a sim-
ple update procedure. This approach can be employed with-

outa priori knowledge of the distribution or skewness of thel”

data: given fixed space, we can then bound the approxima-

tion

quality based on the observed skew.
The two queries that we considered are fundament

to top-k items, change detection, approximate quantiles,
anomaly detection and so on. Many other summarization
and mining tasks can also benefit from the insight that datg]
is rarely uniform, and realistic data is frequently highly

skewed. For example, we remark that our methods in this
paper will give estimates fdnner-product queriebetween [10]
data streams as well in a straightforward way as an extension

of [13].

This has applications to join size estimation in

databases [3], to principal component analysis [31] aE][dl]
sparse correlation matrix estimation [32], but we do n

elaborate further on this here. Likewise, the fact that skew is
frequently seen at multiple levels of aggregation [33] means
that our analysis can be immediately appliedhierarchical [12]
computations, such as computing range sums, estimating
quantiles and so on (see [13] for these computations using

CM

sketch). With appropriate analysis and testing, methods

that capitalize on data skew could improve our understandifgl
of existing algorithms, inspire new methods, and move some
tasks previously thought unachievable into the practical.
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