
JOURNAL OF COMPUTEK AND SYSTEM SCIENCES 31, 182-209 (1985)

Probabilistic Counting Algorithms
for Data Base Applications

PHILIPPE FLAJOLET

INRIA, Rocyuencourt, 78153 Le Chesnav, France

G. NIGEL MARTIN

IBM Detlelopnzent Lahoralory, Hursley Park,
Winchester, Hampshire S0212JN, United Kingdom

Received June 13, 1984; revised April 3. 1985

This paper introduces a class of probabilistic count ing algorithms with which one can
estimate the number of distinct elements in a large collection of data (typically a large tile
stored on disk) in a single pass using only a small additional storage (typically less than a
hundred binary words) and only a few operat ions per element scanned. The algorithms are
based on statistical observat ions made on bits of hashed values of records. They are by con-
struction totally insensitive to the replicative structure of elements in the file; they can be used
in the context of distributed systems without any degradat ion of per formances and prove
especially useful in the context of data bases query optimisation. ‘7’ 1985 Academic Press. Inc

1. INTR~OUCTI~N

As data base systems allow the user to specify more and more complex queries,
the need arises for efficient processing methods. A complex query can however
generally be evaluated in a number of different manners, and the overall perfor-
mance of a data base system depends rather crucially on the selection of
appropriate decomposit ion strategies in each particular case.

Even a problem as trivial as computing the intersection of two collections of data
A and B lends itself to a number of different treatments (see, e.g., [7]):

1. Sort A, search each element of B in A and retain it if it appears in A;
2. sort A, sort B, then perform a merge-l ike operation to determine the inter-

section;
3. eliminate duplicates in A and/or B using hashing or hash filters, then per-

form Algorithm 1 or 2.

Each of these evaluation strategy will have a cost essentially determined by the
number of records a, b in A and B, and the number of distinct elements ~1, j? in A
and B, and for typical sorting methods, the costs are:

182
0022-0000/85 $3.00
CopyrIght 0 1985 by Academic Press, Inc
All rights of reproductmn in any form reserved.

PROBABILISTIC COUNTING ALGORITHMS 183

for strategy 1: O(a log a + b log a);

for strategy 2: O(a log a + b log b + a + b)... .

In a number of similar situations, it appears thus that, apart from the sizes of the
tiles on which one operates (i.e., the number of records), a major determinant of
efficiency is the cardinalities of the underlying sets, i.e., the number of distinct
elements they comprise.

The situation gets much more complex when operations like projections, selec-
tions, multiple joins in combination with various boolean operations appear in
queries. As an example, the relational system system R has a sophisticated query
optimiser. In order to perform its task, that programme keeps several statistics on
relations of the data base. The most important ones are the sizes of relations as well
as the number of different elements of some key fields [8]. This information is used
to determine the selectivity of attributes at any given time in order to decide the
choice of keys and the choice of the appropriate algorithms to be employed when
computing relational operators. The choices are made in order to m inimise a cer-
tain cost function that depends on specific CPU and disk access costs as well as
sizes and cardinalities of relations or fields. In system R, this information is
periodically recomputed and kept in catalogues that are companions to the data
base records and indexes.

In this paper, we propose efficient algorithms to estimate the cardinalities of mul-
tisets of data as are commonly encountered in data base practice. A trivial method
consists in determining card(M) by building a list of all elements of M without
replication; this method has the advantage of being exact but it has a cost in num-
ber of disk accesses and auxiliary storage (at least O(a) or O(a log a) if sorting is
used) that m ight be higher than the possible gains which one can obtain using that
information.

The method we propose here is probabilistic in nature since its result depends on
the particular hashing function used and on the particular data on which it
operates. It uses m inimal extra storage in core and provides practically useful
estimates on cardinalities of large collections of data. The accuracy is inversely
related to the storage: using 64 binary words of typically 32 bits, we attain a typical
accuracy of 10%; using 256 words, the accuracy improves to about 5 % . The per-
formances do not degrade as files get large: with 32 bit words, one can safely count
cardinalities well over 100 m illion. The only assumption made is that records can be
hashed in a suitably pseudo-uniform manner. This does not however appear to be a
severe lim itation since empirical studies on large industrial files [S] reveal that
careful implementations of standard hashing techniques do achieve practically
uniformity of hashed values. Furthermore, by design, our algorithms are totally
insensitive to the replication structures of files: as opposed to sampling techniques,’

’ The simplest sampling algorithm is: take a sample of size No of a file of size N. Estimate the car-
dinality v,, of the sample using any direct algorithm and return vO(N/No) as estimate of the cardinality of
the whole file.

184 FLAJOLET AND MARTIN

the result will be the same whether elements appear a million times or just a few
times.

From a more theoretical standpoint, these techniques constitute yet another
illustration of the gains that may be achieved in many situations through the use of
probabilistic methods. We mention here Morris’ approximate counting algorithm
[6] which maintains approximate counters with an expected constant relative
accuracy using only

log, log, n + O(1)

bits in order to count up to n. Morris’ algorithm (see [2] for a detailed analysis
that has analogies to the present paper) may be used to reduce by a factor of 2 the
memory size necessary to store large statistics on a large number of events in com-
puter systems.

The structure of the paper is as follows: in Section 2, we describe a basic counting
procedure called COUNT that forms the basis of our algorithms. It may be worth
noting that non-trivial analytic techniques enter the justification, and actually the
design, of the algorithms; these techniques are also developed in Section 2. Section 3
presents the actual counting algorithms based on this COUNT procedure and on
the probabilistic tools of Section 2. Finally, Section 4 concludes with several
indications on contexts in which the methods may be used: most notably they can
be employed on the fly as well as in the context of distributed processing with
minimal exchanges of information between processors and without any degradation
of performances. Preliminary results about this work have been reported in [3].

2. A PROBABILISTIC COUNTING PROCEDURE AND ITS ANALYSIS

The Basic Counting Procedure

We assume here that we have at our disposal a hashing function hash of the type:

function hash(x: records): scalar range [0 .,. . 2L - 11,

that transforms records into integers sufficiently uniformly distributed over the
scalar range or equivalently over the set of binary strings of length L. For y any
non-negative integer, we define bit(y, k) to be the kth bit in the binary repesen-
tation of y, so that

y = 1 bit(y, k)2k.
k>O

We also introduce the function p(y) that represents the position of the least
significant l-bit in the binary representation of y, with a suitable convention for
P(o):

PROBABILISTIC COUNTING ALGORITHMS 185

,o(y) = mi; bit(y, k) # 0 if y>O

= L if y = 0.

(Thus ranks are numbered starting from zero.)
We observe that if the values hash(x) are uniformly distributed, the pattern

Ok1 ... appears with probability 2-k-‘. The idea consists in recording observations
on the occurrence of such pattrns in a vector BZTMAP[O . . . L - 11. If M is the mul-
tiset whose cardinality is sought, we perform the following operations:

for i :=0 to L- 1 do BZTMAP[i] :=O;
for all x in A4 do

begin
index := p(hash(x));
if BZ7’MAP[index] = 0 then BZZ’MAP[index] := 1;
end;

Thus BZTMAP[i] is equal to 1 iff after execution a pattern of the form 0’1 has
appeared amongst hashed values of records in M. Notice that by construction, vec-
tor BITMAP only depends on the set of hashed values and not on the particular
frequency with which such values may repeat themselves.

From the remarks concerning pattern probabilities, we should therefore expect, if
n is the number of distinct elements in M that BZTMAP[O] is accessed
approximately n/2 times, BZTMAP[l] approximately n/4 times Thus at the end
of an execution, BZTMAP[i] will almost certainly be zero if iglog, n and one if
i<log, n with a fringe of zeros and ones for izlog, n. As an example, we took as A4
the on-line documentation corresponding to Volume 1 of the manual of the Unix
system on one of our installations. M consists here of 26692 lines of which 16405
were distinct. Considering these lines as records and hashing them through stan-
dard multiplicative hashing over 24 bits (L = 24), we found the following BITMAP
vector:

111111111111001100000000

The leftmost value zero appears in position 12 and the rightmost value one in
position 15 while 2i4 = 16384.

We propose to use the position of the leftmost zero in BITMAP (ranks start at 0)
as an indicator of log,n. Let R be this quantity, we shall see that under the
assumption that hashed values are uniformly distributed, the expected value of R is
close to:

E(R)=log,m cp =0.77351 (1)

so that our intuition is justified. In fact the “correction factor” cp plays quite an
important role in the design of the final algorithms we propose here. We shall also

186 FLAJOLET AND MARTIN

prove that under reasonable probabilistic assumptions, the standard deviation of R
is close to

o(R)= 1.12 (2)

so that an estimate based on (1) will typically be one binary order of magnitude off
the exact result, a fact that calls for more elaborate algorithms to be developed in
Section 3.

Probability Distributions
We now proceed to justify rigorously the above claims (1) and (2) concerning the

distribution of the value of parameter R in the basic counting procedure.

PROBABILISTIC MODEL. We let B denote the set of infinite binary strings. The
model assumes that bits of elements of B are uniformly and independently dis-
tributed. Equivalently strings can be considered as real numbers over the interval
[O; 11, and the model assumes that the numbers are uniformly distributed over the
interval. Functions bit and p are extended to B trivially. We denote by R, the ran-
dom variable defined over B” (assuming independence) that is, the analogue of the
parameter R above:

Rnb, , x2,... , x,) = r iff (i) for all 0 <j< r there is an i such that p(x,) = j
and (ii) for all i p(x,) #r.

We also introduce the following notations concerning the probability distribution
of R, under the uniform model:

p,,.k = WR, = k); qn.k = WR, 2 k 1

k=UR,)= c b,,.,

CT; = E((R,, - l?,J2) = c k2p,.k - a;,

and we let v(n) denote the number of ones in the binary representation of n, so that
for instance v(13)= v((llOl),)= 3. We have

THEOREM 1. The probability distribution of R, is characterised by:

qn,k = f (- 1)““’ 1-L n,
j=O (1 2k

Proof: For each integer k > 0, we define the following events (i.e., subsets of B):

E/c= {x 1 pb)=k}; & = (x 1 p(x) > k).

PROBABILISTIC COUNTING ALGORITHMS 187

Thus, for each k, E,,, E, ,..., Eke,, Kk form a disjoint and complete set of events.
When n elements are drawn from B, the formal polynomial:

Pp)=(E,+E,+ ... +E,el+Kk)” (3)

represents the set of all possible events in the following sense: if we expand (3)
taken as a non-commutative polynomial in its indeterminates, interpreting the sums
as (disjoint) unions of events and the products as successions of events (each
monomial has degree n), we obtain a complete and disjoint representation of B”.

We are interested in obtaining from Pf) an expression for the polynomial Qr)
that represents in a similar fashion the succession of all events corresponding to
R, 2 k. Polynomial Q f) is formed by a subset of the noncommutative monomials
appearing in Pp).

Let us start with a few examples. If k = 0, we have: Pg’ = (K,)” and Qg) = Pl;). If
k= 1,

PI”) = (E, + K,)“, QI”‘=(E,+K,)“-R 1,

since Q is obtained from P is this case by taking out from P the monomial K;
corresponding to the situation where all strings drawn have a p-value at least 1. For
k = 2 now, we have

Qy’= (E. + E, + KJ - (E, + KJn - (E, + KJ + K;,

since we have to take out from P the cases where either p-value 1 or p-value 0 does
not appear but in so doing, we have eliminated the case where all p-values are at
least 2 (i.e., K2) twice.

In general, for P a polynomial in the indeterminates E,, E2,..., the polynomial Q
formed with monomials of degree at most 1 in each of the indeterminates E, can be
obtained from P by the inclusion-exclusion type formula:

Q=P-TP[EpO]+x P[E,,E,-tO]- 1 P[E,,E,,E,-,O]+y (4)
i#j i#/#k

where the notation P[x, y + 0] means the replacement of x, y by 0 in P. Thus Q !/)
can in general be obtained by applying (4) to the expression of Pf) given by (3).

To evaluate the probabilities qn,k, all we have to do is to take the measures ~1 of
the events described by polynomial Q using the rules:

using additivity of measure ,U over disjoint sets of events as well as the relation
p(A. B) = p(A) * p(B) since trials in B are assumed to be independent. On our
pevious examples, we find in this way:

4n,o = 1; 4n.l = 1 - (1)“; qn,2 = 1 - (iv - ct,” + ($Y,

188 FLAJOLET AND MARTIN

and in general:

(5)
where

C,=(-l)ql-& ... -$),
and the sum extends to all t-tuples of integers i i, iz,..., of distinct integers in the
interval [l... k]. Notice that by changing the summation indexes to Z, = k - i,, 5,
can be rewritten as:

where now the lJ are distinct integers over the interval [0 . . . k - 11. In other words,
we have shown that

(6)

Using (6) inside (5) completes the proof of the theorem. m

We now turn to the derivation of asymptotic forms for these probabilities.

THEOREM 2. The distribution of R, satisfies the following estimates:

(i) Ifk<log,n-2log,logn, then

9 n,k = 1 - O(ne-@“);

(ii) rf k < 3 log, n, then

qn,k= ; (1 -e-"'"/9+ 0 7

j=O (1 n

=,Fo [(- 1)v(j) e -jn/2k] + 0 (7) ;
n

(iii) If k > $ log, n + 6, with 6 > 0, the tail of the distribution is exponential:

Proof. The main device here consists in using repeatedly the exponential
approximation:

(1 -a)“ze-““.

PROBABILISTIC COUNTING ALGORITHMS

inside the terms that form the expression of qn,k:

qn,k= ; (-p 1-L n.

j=O () 2k

189

(7)

We set
n

t(j,n,k)= 1-s :
()

(i) The case when k 6 log, n - 2 log, log n. Pulling out the 1 corresponding to
the first term (j= 0) in (7), and noticing that, as j increases, the terms t(j, n, k)
decrease, we find

1-qn,,<2k 1-i .
()

n

Since 2k < n/log2 n, we have log(1 - l/2k)-’ > log2 n/n, and the above inequality
becomes

1 - qn,k < ne -logzn,

as was to be established.
(ii) The case when k < 2 log, n. We set here c(n) = log’ n/n. When j > .c(n)2k,

for k in the given range, t(j, n, k) is O(e-‘“gZ”); since there are less than 2k such
terms, and 2k = O(n3’*), we get

qn,k = c (- 1)““‘t(j, n, k) + O(n312 epJog2”). (8)

We let qi,& denote the sum that appears in (8), and we define similarly

di.k =
C (_ 1)v(I) e-W/2k,

j < E(n)zk

For j < .s-(n)2k, we have

If(j , 4 k)-e-VPkl =o(~-M~(,OC-~iWk) _ 1))

= O(d(n)).

so that, since q’ and q” comprise 2ke(n) terms,

id&k - d,ki = o(n2kE3(n))j (9)

a quantity which is O(log6 n/G). T o d erive the final expression, all we have to do
is to “complete the sum” in qz,&; we set

(_ 1)U e - Wk + E

k>O
(10)

190 FLAJOLET AND MARTIN

where the error term E satisfies

Combining Eqs. (8), (9), (lo), (11) therefore establishes the sum expression that
appears in claim (ii) of the statement. To derive the product form, we appeal to the
general identity

c (-l)‘(J’q& l--j (1-q2”).
120 ?X>O

(iii) The case when k = $ log, n + 6. We bound the probabilities qn.k by
observing that since the p-value k - 1 is taken at least once:

Pr(R, > k) G 1 - (1 - 1/2k)“,

-c 1 -exp(-2.n/2k). (12)

In the range of values of k considered, the last expression is O(n/2k), which is itself
of order 0(2-“/J); thus the proof of part (iii) is now completed. 1

For the sequel we introduce the real function:

$(X)= n (1 -em \-“)= C (-l)'(j'exp(-jx).
/20 />O

Thus Theorem 2 expresses essentially the existence of a sort of limiting distribution
for the probability distribution of R,, as n gets large:

Table I describes the values of the probabilities compared to the approximation
given by (14). It shows excellent agreement between the qn,ls and their
approximations. It also reveals that the tail decreases sharply (actually a decrease
faster than that of Theorem 2 may be established).

Asymptotic Analysis
From Theorem 2 follows that

LEMMA 1. The expectation 8, of R, satisfies

(15)

PROBABILISTIC COUNTING ALGORITHMS 191

TABLE I

Values of Exact Probabilities (qn,J and of the Approximations (9) (in Italics)

k=4 k=5 k=6 k=l k=8 k=9 k=lO k=ll

loo 0.0019 0.0439 0.200 0.3452 0.2767 0.1088 0.0212 0.0020
0.0016 0.0417 0.1985 0.3476 0.2789 0.1087 0.0209 0.0020

k=7 k=8 k=9 k= 10 k=ll k= 12 k=l3 k= 14

loo0 o.ooo4 0.0201 0.1389 0.3166 0.3216 0.1586 0.0388 0.0047
0.0004 0.0200 0.1387 0.3167 0.3219 0.1586 0.0388 0.0047

k= 10 k=ll k=l2 k= 13 k= 14 k=l5 k=l6 k= 17

loo00 O.oool 0.0076 0.0863 0.2673 0.3469 0.2150 0.0659 0.0101
0.0001 0.0076 0.0863 0.2673 0.3469 0.2150 0.0659 0.0101

Note. n= 100~2~@, n= 1000~9~‘~, and n= lOC~00~2’~‘~.

Thus the problem of estimating R,, asymptotically reduces to that of estimating
the sum in (15), i.e., the function

for large x. To that purpose we appeal to Mellin transform techniques whose
introduction in the context of analysis of algorithms is due to De Bruijn (see [4,
pp. 131 et seq.]). The Mellin transform of a function f(x) defined for x > 0, x real,
is by definition the complex functionJ*(s) given by

f*(s) = ML-f(x); s] = joa f(x) xs - ’ dx. (17)

We succinctly recall the salient properties of the Mellin transform, referring the
reader to [I] for precise statements. The Mellin transform of a function f is defined
in a strip of the complex plane that is determined by the asymptotic behaviours off
at 0 and co. It satisfies the important functional property

M[f(ax); s] = a-“f*(s).

Finally there is a complex inversion formula

(18)

(19)

where c is chosen in the strip where the integral in (17) is absolutely convergent.

192 FLAJOLETAND MARTIN

The interest of the inversion formula is that, in many cases, it can be evaluated by
means of the residue theorem, each residue corresponding to a term in the
asymptotic expansion of J:

LEMMA 2. The Mellin transform qf F(x) is for - 1 < Re(s) < 0:

F*(s) = & N(s) T(s),

where T(s) is the Euler Gamma function and N(s) is an entire function that is the
analytic continuation of the function defined for Re(s) > 1 by

N(s)= 1 w,
i>l J

Proof Let I+!J~(x)z $(x)- 1. The transform of $1 is for Re(s)> 1:

l)?(s) = 1 (- l)““‘j--,Y-(s)
121

= N(s) r(s), (20)

as follows from the basic functional property (18), and the fact that the transform
of exp(-x) is the Gamma function T(s). Similarly, for $*(x) = Ii/(x) -+(x/2) and
Re(s) > 1, we get

$:(s) = MC$(x) - $(-42); sl = $ WN 1 - 2”). (21)

Since t&c) - $(x/2) is exponentially small both at 0 and co, the transform +: is
actually analytic for all complex s; since:

we find that N(s) is analytic for all s except possibly for the points s = 2ikn/log 2,
where the denominator of (22) vanishes. However, direct calculations in Lemma 3
below show that N(s) is analytic for Re(s) > -1, so that N(s) is analytic
everywhere.

Now, using again the basic functional property,

F*(s)= t,b$(s) 1 k2ks
kbl

(23)

where (23) is valid for Re(s)<O. Putting together (20), (21), (22), (23) establishes
the claim of the lemma.

PROBABILISTIC COUNTING ALGORITHMS 193

We now need to establish some more constructive properties of N(s) for
Re(s) < 0, establishing in passing the analytic continuation property of N(s) used in
the proof of Lemma 2.

LEMMA 3. The function N(s) satisfies N(0) = -1. Furthermore, for s = o + it and
c7 > -0.99, it satisfies

N(s)=0(1 + IsI’).

Proof Terms in the definition of N(s) may be grouped 4 by 4; using the
property

v(4j) = v(j); v(4j+ 1) = v(4j+ 2) = 1 + v(j); v(4j+ 3) = 2 + v(j),

we find

N(s)= -I-“-2-“+3-”

We observe that the general term in the above sum is 0(jj-2) as j gets large. This
confirms that N(s) is defined and analytic when c > - 1. To obtain the bounds on
N(s), we split the sum (24): the terms such that j< IsI* contribute at most
O(1 + Is]“) to the sum; and since

uniformly in s and u when u < l/Is/ 2, we find that the contribution of terms such
that j> (s[* is

O(lsl* C j-0-2)=O(Is12),
i> IsI2

uniformly in s when c > -0.99, say. Finally substituting s= 0 in (24) gives
N(O)= -1. 1

We can now come back to the asymptotic study of F(x) and hence of 8, using
the inversion formula (19).

THEOREM 3.A. The average value of parameter R, satisfies:

R, = log,(cpn) + P(log, n) + o(l),

where constant cp = 0.77351 . . . is given by

m (4p+1)(4p+2) (
,=,-112eyiplJl [(4p)(4p+3) 1 1 w

571/31/l-4

194 FLAJOLET AND MARTIN

and P(u) is a periodic and continuous functions of u with period 1 and amplitude
bounded by 10 5.

Proof: By Lemma 1, the problem reduces to obtaining an asymptotic expansion
of F(x) as x --) co up to o(1) terms. The principle consists in evaluating the complex
integral of the form (19) by residues. From the inversion theorem for Mellin trans-
forms, we have

We consider for k a positive integer the rectangle contour r, defined by its corner
points (and traversed in that order)

rk = [- l/2 - i(2k + 1) n/log 2; - l/2 + i(2k + 1) n/log 2;

1-i(2k+l)~/log2;1+i(2k+l)n/log2].

By Cauchy’s residue theorem, we have

1
- 1 F*(s) x~-’ ds = - c Res(F*(s)x-“).
2i7c r, Jinrk

For fixed x, as k gets large, the integral along the segment
[- l/2 - i(2k + 1) rc/log 2; - l/2 + i(2k + 1) rc/log 23 tends to F(x) by (25). From
Lemma 3 and the exponential decrease of Z(s) towards ice, the integrals along
[-1/2+i(2k+ l)n/log2; 1 -i(2k+ l)n/log2] and [1 +i(2k+ l)n/log2;
- l/2 - i(2k + 1)rc/log 21 tend to zero exponentially fast (as functions of m). As to
the integral along [1 - i(2k + 1) n/log 2; 1 + i(2k + 1)rc/log 21, it stays bounded in
absolute value by

1
271 I I +=]F*(l +it)l x--’ dt<;,

for some constant K. (Again the exponential decrease of T(s) guarantees con-
vergence of the above integral.) We have thus found that, by letting m -+ co:

F(x) = - c Res(F*(s)x-“) + 0 k
Re(s)= 0 0

I. (26)

(The sum of residues is also absolutely convergent because of the decrease of T(s)
towards ice.) It only remains to evaluate the residues in (26). F*(s) has a double
pole at s = 0 and simple poles at each xk = 2ikz/log 2, with k an integer different
from 0, and we find easily

-Res(F*(s)x-“;s=O)=log,x+L ---
N’(0) 1

1og2+ log2 2’

PROBABILISTIC COUNTING ALGORITHMS 195

which we may rewrite as log, cpx, and

-Res(F*(s) x-“; s = xk) = (l/log 2) r(xk) N(xk) xPXk,

which is of the form pk e~Ziknlogzx.
Thus summing the residues, and using (26), we find the announced asymptotic

form for F(x) (and hence Rll), with P(u) given by

P(u)= C pke~2ikn”.
k~Zl{O)

The gory details of the bound on the amplitude of P(u) are left for the Appen-
dix. 1

We can evaluate the standard deviation of R, in a similar fashion. Let S, be the
second moment of R, : S, = E(Rz). As before, S, is approximated by the function
G(n) where

whose transform is found to be for Re(s) < 0

2”(1 l t2”)
G*(s) = (1 _ 2sl2 0) N(s),

which now has a triple pole at s = 0. Computing G(z) is done from G*(s) via the
inversion theorem followed by residue calculations, and one finds:

THEOREM 3.B. The standard deviation of R, satisfies

0: = c’, + Q(log, n) + o(1),

where (T o. = 1.12127... and Q(u) is a periodic function with mean value 0 and period 1.

We can mention in passing for crm the “closed form” expression

02 1 = m 12(log 2)2 [2n + log 2 - 12N’(O) - 12N”(O)] - 2 2 IPk12,
k>O

where the pk are the Fourier coefficients of P(u) defined above.

3. PROBABILISTIC COUNTING ALGORITHMS

We have seen in the previous section that the result R of the COUNT procedure
has an average close to log, cpn, with a standard deviation close to 1.12. Actually
the values of

J(n) = (1/~)2~n

196 FLAJOLET AND MARTIN

are amazingly close to n as the following instances show:

A(10) = 10.502; I*(100) = 100.4997; A(1000) = 1000.502.

This observation justifies the hope of obtaining very good estimates on n from the
observation of parameter R, using the correction factor cp. However, the dispersion
of results corresponds to a typical error of 1 binary order of magnitude which is
certainly too high for many applications.

The simplest idea to remedy this situation consists in using a set H of m hashing
functions, where m is a design parameter and computing m different BITMAP vec-
tors. In this way, we obtain m estimates R(l), R<*),..., R’“‘. One then considers the
average

A=R’l’+R’*‘+ . . . +R’“>

m (27)

When n distinct elements are present in the file, the random variable A has expec-
tation and standard deviation that satisfy

E(A) z log, cpn; a(A)zo,:fi.

Thus we may expect 2A to provide an estimate of n with a typical error (measured
by the standard deviation of the estimates) of relative value z K/h.

Such an algorithm using direct averaging has indeed provably good performances
(with an expected relative error of about 10 % if m = 64) but it has the disadvantage
of requiring the calculation of a number of hashing functions, so that the CPU cost
per element scanned gets essentially multiplied by a factor of m.

It turns out that an effect very similar to straight averaging may be achieved by a
device that we call stochastic averaging. The idea consists in using the hashing
function in order to distribute each record into one of m lots, computing
LY = h(x) mod m. We update only the corresponding BITMAP vector of address c1
with the “rest” of the information contained in h(x), namely h(x) div m = Lh(x)/m].
At the end, we determine as before the R(j)’ s and compute their average A by (27).
Hoping for the distirbution of records into lots to be even enough, we may thus
expect that about n/m elements fall into each lot so that (1/~)2~ should be a
reasonable approximation of n/m.

The corresponding algorithm is called Probabilistic Counting with Stochastic
Averaging, or PCSA for short. It is described in Fig. 1. We claim that its cost per
element scanned is handly distinguishable from that of the COUNT procedure and
its relative accuracy improves with m roughly as 0.78/& In the sequel, we shall
call standard error the quotient of the standard deviation of an estimate of n by the
value of n; this quantity is thus a precise indication of the expected relative accuracy
of an algorithm estimating n. Neglecting periodic fluctuations of extremely small
amplitude (less than lo-‘), we shall call the bias of an algorithm the ratio between
the estimate of n and the exact values of n for large n. Standard error and bias of

PROBABILISTIC COUNTING ALGORITHMS 197

program PCSA;

const nmap = 64; Iwith nmap = 64, accuracy is typically 1 O#

lnmap corresponds to variable m in the analysisj
(D = 0.77351 [the magic constant{; marlength = 32;
[with mnzlength =32 (==.L). one can count up to lo*.{

var M. multiset of data of type records;
z: recwds; hashedz. index, a. R, S, 3: integw;
B ITMAPS array [O..nmap- 19 mazlengfh- f] of integer:

function getelement(var trecosds);

[reads an element z of type records from file Mj
function hash(zrecords).integer;

Ihashes a record z into an integer over scalar range [O. 2mPrrmgrh-l]j
functionp(y.integer).integer:

lreturns the position of the first l-bit in y; ranks start at 0.1

begin

while not co/(M) do

begin

getelement(hashe&:=hash(r);

a:=hashedz mod nmap; indez:=p(hashedz div nmap);

if BITMAfia.indez]=O then BITMAqa,indez]:=l;

end:

s = 0;

for i:=O to nmap- 1 do

begin

R:=O; while (BITMAFfi.R]=l) and (R<ma.zlength) do R:=R+l; S =S+R:

end;

E:=tru”c(nmap/~ e l ys/ *map));

IResult 3 of the PCSA programme that estimates n I
end.

FIG. 1. Probabilistic counting with stochastic averaging (PCSA).

TABLE II

Bias and Standard Error of PCSA for Several Values of
m, the Number of BITMAP Vectors Used

m Bias % Standard error

2 1.1662 61.0
4 1.0792 40.9
8 1.0386 28.2

16 1.0191 19.6
32 1.0095 13.8
64 1.0047 9.7

128 1.0023 6.8
256 1.0011 4.8
512 l.oco5 3.4

1024 1.0003 2.4

198 FLAJOLET AND MARTIN

algorithm PCSA for various values of the design parameter m are displayed in
Table II.

In the remainder of this section, we are going to justify these claims rigorously
and in particular show how the estimates of Table II are deduced.

We let Z denote the random variable computed by PCSA with m BITMAPS and
let 3, denote this random variable when n distinct elements are present in the file;
we denote by E[Z”,] the average value of ED and cr(Z:,) the standard deviation of
E-,. We propose to establish:

THEOREM 4. The estimate Z-, of algorithm PCSA has average value that
satisfies’:

E[snl=% [i& (m) (m)
N -1 r -!- (l-,--I’m) m+nP,,(log2n)+o(n);]

the second moment of Z,, satisfies

EIm=$[&$ -~)r(-;i;) (l-2 -‘-~)l”+n*~~(log2n)+o(n’).

In the above expressions P, and Q,,, represent periodic functions with period 1, mean
value 0 and amplitude bounded by 10 ~- ‘.

THEOREM 5. Using the notation u(n) E v(n) to express the property

3n,Vn>n, iu(n)-v(n)l< lOpi

one has the following characterisations of the bias and standard error of algorithm
PCSA :

F=(l+c(m))

~CKII --v(m), n

where quantities E(m) and g(m) satisfy as m gets large:

where

log2 2 *=&$v(o)‘-W(O)+,.
’ The error terms in Theorem 4 and the n, in Theorem 5 are not uniform in tn.

PROBABILISTIC COUNTING ALGORITHMS 199

The Analysis of Algorithm PCSA
We now proceed with the proof of Theorem 4. We start with an estimate of

E[j”“] for 1 </I 6 2 that is needed throughout the rest of this section and prove

LEMMA 4. Setting fl= 2l1‘7, with q > 1, one has for fixed q

E[fiRn] = n”q(dq + P,(log, IZ)) + o(n’lq),

d,= - &w4+3of)

and P, is a periodic function of amplitude less than 10p5.

Proof: (i) We start with a strenghening of bounds on the tail of the distribution
of R,. Consider the probability Pr[R, > k] where k = ilog, n + 6, with 6 > 0. When
R, > k, positions (k- 1) and (k - 2) of BITMAP are set to 1, an event that has
probability

a quantity which is
1 _ e-n/2k + O(n/2=) _ e-n/2k-’ + O(n/2*‘) + ,-3&’ + O(n/2*)

or O(n/22k), which in the given range of values of k is O(n-3’24--5). Thus

k > (5/4)logzn

2kp,,k = 0 (n514-312 ,;, 4p6 26) = O(n-‘I”), (28)

and the same bound applies if 2 is replaced by b in the above sum.
We now consider the error that comes from the replacement of the pn,k by their

asymptotic equivalent for “small” k. From the bounds of Theorem 2, one finds

1 Pk[P”,k-*(~)+*(~)]=0(~)=0(n0.7”), (29)

k< (5/4)loan

a quantity which is <n . ‘lq Thus completing the sum and defining the function

we have from (28), (29):

E[flRn] = H(n) + O(n0.76’q).

200 FLAJOLET AND MARTIN

The asymptotic behaviour of H is determined by Mellin transform techniques as
before; the transform of function H is

H*(s) = - 82” T(s) N(s).
1 -P2”

H* has poles at s = -l/q + 2&/log 2 and we find the claim of the lemma, using the
inversion theorem with

d,= -Res(H*(s);s= -l/q). 1

The next step in the proof of Theorem 4 is to establish that algorithm PCSA
behaves asymptotically as though the n elements were perfectly distributed in m
groups.

LEMMA 5. If n elements are distributed into m cells (m fixed), where the
probability that any element goes to a given cell has probability l/m, then the
probability that at least one of the cells has a number of elements N satisfying

IN-n/ml >&logn

is O(e- h’og2n) for some constant h > 0.

Proof Set p = l/m, q = 1 - l/m; let N, be the number of elements that fall into
cell 1. N, obeys a binomial distribution

Pr(N, =k) = ;[- pkqnpk,
0

and taking logarithms of (30), for k = pn + 6 and 6 4 n, one finds

Pr(N, = pn + 6) = exp -

If 6 = & log n, the probability (30) is exponentially small. We conclude the proof
by observing that the binomial distribution is unimodal and

We can now conclude the proof of the first part of Theorem 4. Let S denote the
sum R<‘> + RC2) + ... + R<“>. We have

Pr(S= k) = ,,,+n2+;+n =~~(n,,n,:...,n,)P.,*,P.?.k*“‘P.~,k~. c31)
k,+k2+ ... +km,=k

PROBABILISTIC COUNTING ALGORITHMS 201

Thus

E(2”‘“) = .,+~:,~+~~_,~(rr,.n~...,n,)E(2~n1’m)E(2Rn2’m)...E(2Rn~m~. (32)

Call E the quantity (32) and E, the sum of the terms in (32) such that for all
j, 1 <j< m:

I I nj-- < ; &logn.

From Lemmas 4,5, E-E, is O(ne- “‘g2”). As to the central contribution EC it is
bounded by

(E[2(llm)R,i,~~~~lopn I)” < ,J7, < (E[2(llm)R,/m+,iAlog~])m,

so that finally

E[2”‘“] = (E[2(1’m)Rnjm])m + o(n). (33)

or

E(B,) =; (EC2 (llm)Rn/q)m + o(n). (34)

Equation (34) combined with Lemma 5 is sufficient to establish the estimates on .Yn
from Theorem 4, provided we check that the amplitudes of the periodic fluctuations
do not grow with m, a fact that can be proved using the methods described in the
Appendix.

Estimates on the second moment of Sn are derived in exactly the same way
through the equality

E(E;) =$ (E[2(2’m)Rnjm])m + o(n2). (35)

Dependence of Results on the Number of BITMAPS
We finally conclude with an indication of the (easy) proof of Theorem 5. From

Theorem 4, all we need is to determine the asymptotic behaviour of the quantities

W)=-$[&N(-i) r(-k) (2-2-2’m)]“,

(36)

(37)

r(m) = (P(m) - a2(m)P2, (38)

202 FLAJOLET AND MARTIN

as m gets large since we neglect the effect of the small periodic fluctuations. This is
achieved by performing standard (but tedious) asymptotic expansions of (36), (37)
(38) for large m. (This task as been carried out with the help of the MACSYMA
system for symbolic computations.) We find that the bias and standard error arefor
all values ofm closely approximated by the formulae

bias: 1 +0.31/m (39)
standard error: 0.78/A. (40)

4. IMPLEMENTATION Issues

There are three factors to be taken into account when applying algorithm PCSA:

(i) The choice of the hashing function.
(ii) The choice of the length of the BITMAP-vectors, L.
(iii) The number, nmap, of BITMAP used (corresponding to quantity m in

our analyses).

Also corrections of two types may be introduced:

(iv) Corrections to the systematic bias of Table II.
(v) Corrections for initial nonlinearities of the algorithm.

We briefly proceed to discuss these issues here.

1. Hashing functions. Simulations on textual files (see below) ranging in size
from a few kilobytes to about 1 megabyte indicate that standard multiplicative
hashing leads to performances that do not depart in any detectable way from those
predicted by the uniform model of Sections 2, 3. There, a record x = (x0, xi,..., xp)
formed of ASCII characters is hashed into

h(x) = M+ N i ord(xi) 128’
(

mod 2L,
,=o >

with ord(rc) denoting the (standard ASCII) rank of character K. This good
agreement between theoretically predicted and practically observed performances is
in accordance with empirical studies concerning standard hashing techniques and
conducted on large industrial files by Lum et al. [5].

2. Length of the BITMAP vector. Since the probability ditribution of the R-
parameter has a very steep distribution, it suffices to select L in such a way that

L > log,(n/nmap) + 4. (41)

Thus, as already pointed out, with nmap = 64, taking L = 16 makes it possible to
safely count cardinalities of files up to no 105, and L= 24 can be used for car-

PROBABILISTIC COUNTING ALGORITHMS 203

dinalities well beyond 10’. The probabilities of obtaining underestimates because of
such truncations (the probabilistic model assumes L to be infinite) can be com-
puted from our previous results and when (41) is satisfied, the error introduced is
below 5. 10e3.

3. Number of BITMAPS. The expected relative accuracy of the algorithm or
standard error is by Theorems 4, 5 inversely proportional to fi, being closely
approximated by

Thus nmap = 64 leads to a standard error of about lo%, and with nmap = 256, this
error decreases to about 5 % (see Table II).

4. Bias. The bias of algorithm PCSA as presented in Table II is negligible com-
pared to the standard error as soon as nmap exceeds 32. If smaller values of nmap
are to be used, it can be corrected using the results of Theorems 4, 5. For a practical
use of the algorithm, it suffices to use the estimates of Theorem 5, which one
achieves by changing the last instruction of the programme to

2 := trunc(nmap/(cp*(l + 0.31/nmap))*2**(S/nmap)).

In so doing, we obtain an algorithm which apart from the small periodic fluc-
tuations of amplitude less than lop4 is an asymptotically unbiased estimator of car-
dinahties n.

5. Initial non-linearities. The asymptotic estimates which form the basis of the
algorithm are extremely close to the actual average values as soon as n/nmap
exceeds l&20. If very small cardinalities were to be estimated, then based on the
characterisation of probability distributions, corrections could be computed and
introduced in the algorithm. (These corrections would be based on calculation of
exact average values from our formulae instead of using the asymptotic estimates).

Simulations

We have conducted fairly extensive simulations of algorithm PCSA applied to
textual data. The files called man,, man* ,..., mans correspond to chapters of the on-
line documantation available on one of our systems, and the versions mani w,
man2 w,... correspond to the tiles obtained from the preceding ones by segmentation
into 5 character blocks. Standard multiplicative hashing was used as described by
Eq. (41). We counted in each case the number of different records and compared
with corresponding values estimated by algorithm PCSA (here, a record is a line of
text for mani ,... and a 5 letter block for man, w,...). Some sample runs are reported
in Table III, and they show good agreement between our estimates and actual
values. The files are mixtures of text in English, names of commands and
typesetting commands.

We have also taken these 16 tiles, and have subjected them to algorithm PCSA,
varying the constants M and N in (41). This provides empirical values of the bias

204 FLAJOLET AND MARTIN

TABLE III

Sample Executions of Algorithm PCSA on 6 Files with the Same Multiplicative Hashing Function

File Card. 8 16 32 64 128 256

man 1 16405 17811 16322 14977 15982 16690 17056
1.08 0.99 0.91 0.97 1.01 1.03

man 1.w 38846 40145 40566 40145 43290 41230 42592
0.96 1.01 0.96 1.07 1.02 1.06

man 2 3149 2421 2887 3015 3015 2840 2982
0.77 0.91 0.95 0.95 0.90 0.94

man 2.w 10560 10590 9711 9100 9100 10032 10734
1.00 0.91 0.86 0.86 0.95 1.01

man 8 3075 4452 3744 3360 3252 3097 3106
1.44 1.21 1.09 1.05 1.00 1.01

man 8.w 11334 10590 10590 10363 10705 10999 10676
0.93 0.93 0.91 0.94 0.97 0.94

Note. The figure displays the file name, the exact cardinality, the estimated cardinality for nmap = 8.
16, 32, 64, 128, 256, and the ratio of estimated cardinalities to exact cardinalities (in italics).

and standard error of PCSA (averaging over 10 simulations x 16 tiles) that again
appear to be in amazingly good agreement with the theoretical predictions. Such
results are reported in Table IV and should be compared with Table II. (The
correction for small values of nmap described above has been inserted into the
algorithm PCSA of Fig. 1.)

Applications to Distributed Computing
Assume a fine F is partitioned into subtiles F,, F;!,..., F,, where the F, and Fi need

not be disjoint. Such a situation occurs routinely in the context of distributed data
bases.

TABLE IV

Empirical Values of Bias and Standard Error Based on
160 Simulations

m Bias % Standard error

8 1.0169 31.92
16 1.0104 19.63
32 0.9798 12.98
64 0.996 1 9.67

128 1.0035 6.68
256 1.0073 4.65

Note. Ten different hashing functions applied to the
16 files mani ,..., mans.w.

PROBABILISTIC COUNTING ALGORITHMS 205

Then the global cardinality of file F may be determined as follows:

Process separately each of the s subfiles by algorithm PCSA. This gives rise
to s BITMAP vectors, BITMAP, ,..,. Each of the s processors sends its result
to a central processor that computes the logical or of the s BITMAPS. The
resulting BITMAP vector is then used to construct the estimate of n.

It is rather remarkable that the accuracy of the estimate is, by construction, not
affected at all by the way records are spread amongst subtiles. The number of
messages exchanged is small (being O(s)), and the algorithm results in a net speed-
up by a factor of s.

Scrolling

The matrix of BITMAP vectors has a rather specific form: it starts with rows of
ones followed by a fringe of rows consisting of m ixed zeros and ones and followed
by rows all zeros. This suggests naturally a more compact encoding of the bitmap
that may be quite useful for distributed applications since it then m inimises the sizes
of messages exchanged by processors. The idea is to indicate the left boundary of
the fringe, followed by a standard encoding of the fringe itself. For instance if the
BITMAP matrix is

1111101000000
1111110000000
1111010110000
1111110100000

then, one only needs to represent the leftmost boundary of the fringe here 4) and
the binary words 10100, 11000, 01011, 11010.

This technique amounts to keeping only a small window of the BITMAP matrix
and scrolling it is necessary. For practical pruposes, a window of size 8 should suf-
fice, so that the storage requirement of this version of PCSA becomes close to
$log,n + nmap bytes.

Deletions

If instead of keeping only bits to record the occurrences of patterns of the form
O“l, one also keeps the counts of such occurrences, one obtains an algorithm that
can maintain running estimates of cardinalities of tiles subjected to arbitrary
sequences of insertions and deletions. The price to be paid is however a somewhat
increased storage cost.

5. CONCLUSION

Probabilistic counting techniques presented here are particular algorithmic
solutions to be problem of estimating the cardinality of a multiset. It is quite clear z.4

206 FLAJOLET AND MARTIN

that other observable regularities on hashed values of records could have been used,
in conjunction with direct or stochastic averaging. We mention is passing:

-the rank of the rightmost one in BITMAP: this parameter has a flatter dis-
tribution that results in an appreciably less accurate algorithm (in terms of stan-
dard error);

-the binary logarithm of the minimal hashed value encountered (hashed
values being considered are real [O; 11 numbers) provides an approximation to
log, l/n, but the resulting algorithm appears to be slightly less accurate than PCSA.

The common feature of all such algorithms is to estimate the cardinality n of a mul-
tiset in real time, using auxiliary storage O(m log, n) with a relative accuracy of the
form:

It might be of interest to determine whether appreciably better storage/accuracy
trade-offs can be achieved (or to prove that this is not possible from an infor-
mation-theoretic standpoint).

For practical purposes, algorithm PCSA is quite satisfactory. It consumes only a
few operations per element scanned (may be 20 or 30 assembly language instruc-
tions), has good accuracy described at length in the previous sections, and may be
used to gather statistics on files on the fly (therefore eliminating the additonal cost
of disk accesses). On a VAX 1 l/780 running Berkeley Unix, a non-optimised ver-
sion in Pascal used for our tests is already typically twice as fast as the standard
system sorting routine. A version of the algorithm has been implemented at IBM
San Jose in the context of the System R* Project.

APPENDIX: THE AMPLITUDE OF PERIODIC FLUCTUATIONS

The purpose of this Appendix is to show how the fluctuations, in the form of
Fourier series, that appear in Theorems 3, 4, 5 can be precisely bounded. Notice
that the problem reduces to showing that the Fourier coefficients have sufficiently
small values.

All these Fourier coefficients are values of functions of the form:

W) N(s) w(s),

with w(s) a “well-behaved” function, taken at points xk = 0 + 2ikrc/log 2 and k is a
non-zero integer. Quantity (r depends on the particular problem considered: 0 = 0
in Theorem 3, 0 = -l/m in Theorems 4, 5.

We shall only give a proof in the case of Theorem 3.A, the other proofs being
entirely similar. We thus need to find bounds for the Fourier series:

P(u)= 1 pk e-2iknu
keZ/iOI

PROBABILISTIC COUNTING ALGORITHMS 207

with

pk=log 2
‘f(g&(gq.

The behaviour of the gamma function along the imaginary axis is known:

If(d)1 = JqGGz

so that it decreases very fast when going away from the real axis. For instance, one
finds with Xk = 2ikrcllog 2:

If(= 5.45249. lo-‘; If(= 2.52468. lo- 13.

Thus all that is required is effective bounds on IN(i These follows easily by
refining the approach taken in the proof of Lemma 3.

Define for x and t real, the function (see Eq. (24)):

LEMMA. For t 3 1 and x < 3/2t, one has:

If(x, t)l d 16x2t2.

ProoJ: The proof depends on the following easy observations: for y 3 0:

log(l +Y)GY (1)

and for Iu(< 4:

JeU- 1 - 2.4 6 IU(?

which follows immediately from the inequality:

(2)

Thus rewriting the definition off in exponential form

ftx, t)= 1 ~,-~tlog~l+x)~,-irlog(l+2x)+,-itlog(l+3.r)

we find using (2) that, when 3xt < 4,

(3)

1 + 3x
f(x, t)= -itlog (1 +x)(l +2x)fR

208 FLAJOLET AND MARTIN

where the remainder R satisfies

Now since

we obtain

IRI G t2(log2(1 + x) + log*(1 + 2x) + log*(1 + 3x))
< 14t2x2.

1+3x
log (1 +x)(1 +2x) 62x2,

(5)

(6)

I,f(x, t)l 6 2tx* + 14t2x2 < 16x2t2. 1

The above lemma can be used for two purposes: (1) bounding the values of
jN(it)l for large t; (2) bounding the truncation errors when estimating N(t) from
the sum of its first few terms.

COROLLARY. For all t 3 1, N(d) satisfies

) N(it)J Q t* + 7t + 7. (7)

Proof Consider the form (24) of N(it). With the notations of the lemma, it is

N(if)= -1 ~“-2~~ir-3~“+ c ~ (- 1 P cr(j it)
i2l (4.i)”

)

where ol(j, it) = f(1/4j, t). Define j,(t) = max(Lt/6_1, 1) so that 1/4j, 6 3/2t. Splitting
the sum in (8) as I,,, = XI <j<jo + Cl, <i and applying the trivial bound
If(x, t)l <4 to the first sum and the bound of the lemma to the other one, we find

(9)

The modulus of N(xl) is found by direct numerical computations to be less than
6, and one has

N(x~)E -4.42 - 3.991’; Nh) z -6.55 - 3.17i; N(x3)z +2.75 + 1.77i.

Thus using these values, one can check that lp,l < 0.5 10P6, I pzl < 10e9, and that
the pk with k > 2 are much smaller and exponentially decreasing with the basis of
the exponential equal to e-n2”og 2 ~0.6584 10-6.

PROBABILISTIC COUNTING ALGORITHMS 209

ACKNOWLEDGMENTS

The first author would like to express his gratitude to IBM France and the IBM San Jose Research
Laboratory for an invited visit during which his work on the subject was done for a large part. Thanks
are due to M. Schkolnick, Kyu Young Wang (who implemented the method), and R. Fagin for their
support and many stimulating discussions.

Note added in proof: The sequence (- 1) “(PI that occurred repeatedly here is the classical Morse-
Thue sequence. Using the Dirichlet generating function N(s), Allouche et al. (Automates finis et series de
Dirichlet, J. Inform. Math., Publ. Math. Universiti de Caen, 1985) have obtained several interesting
properties of that sequence, including a proof of a curious identity of Shallit (compare with our
Theorem 3A):

(4p+ 1)(4p+4)
$=t;, [(4~+2)(4~+31]

(-‘)“r”

REFERENCES

1. G. DOETSCH, “Handbuch der Laplace-Transformation,” Birkhauser, Basel, 1950.
2. P. FLAJOLET, Approximate counting: A detailed analysis, BIT 25 (1985), 113-134.
3. P. FLAJOLET AND N. MARTIN, Probabilistic counting, in “Proc. 24th IEEE Sympos. Foundations of

Computer Science, Nov. 1983,” pp. 76-82.
4. D. E. KNUTH, “The Art of Computer Programming: Sorting and Searching,” Addison-Wesley,

Reading, Mass., 1973.
5. V. Y. LUM, P. S. T. YLJEN, AND M. DODD, Key to address transformations: A fundamental study

based on large existing formatted tiles, Comm. ACM 14 (1971), 228-239.
6. R. MORRIS, Counting large numbers of events in small registers, Comm. ACM 21 (1978), 84&842.
7. I. MUNRO AND P. SPIRA, Sorting and searching in multisets, SIAM J. Comput 5, No. I (1976), l-8.
8. P. GRIFFITHS SELINGER, M. M. ASTRAHAN, D. D. CHAMBERLIN, R. A. LORIE, AND T. G. PRICE,

“Access Path Selection in A Relational Database Management System,” Report RJ-2429, IBM San
Jose Res. Lab., Aug. 1979.

571/31/2-5

