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This paper  introduces a  class of probabilistic count ing algorithms with which one  can 
estimate the number  of distinct elements in a  large collection of data (typically a  large tile 
stored on  disk) in a  single pass using only a  small additional storage (typically less than a  
hundred binary words) and  only a  few operat ions per  element scanned.  The  algorithms are 
based  on  statistical observat ions made  on  bits of hashed  values of records. They are by  con- 
struction totally insensitive to the replicative structure of elements in the file; they can be  used 
in the context of distributed systems without any  degradat ion of per formances and  prove 
especially useful in the context of data bases query optimisation. ‘7’ 1985 Academic Press. Inc 

1. INTR~OUCTI~N 

As data base systems allow the user to specify more and  more complex queries, 
the need  arises for efficient processing methods. A complex query can however 
generally be  evaluated in a  number  of different manners,  and  the overall perfor- 
mance of a  data base system depends rather crucially on  the selection of 
appropriate decomposit ion strategies in each particular case. 

Even a  problem as trivial as computing the intersection of two collections of data 
A and  B lends itself to a  number  of different treatments (see, e.g., [7]): 

1. Sort A, search each element of B in A and  retain it if it appears in A; 
2. sort A, sort B, then perform a  merge-l ike operation to determine the inter- 

section; 
3. eliminate duplicates in A and/or B using hashing or hash filters, then per- 

form Algorithm 1  or 2. 

Each of these evaluation strategy will have a  cost essentially determined by the 
number  of records a, b in A and  B, and the number  of distinct elements ~1, j? in A 
and  B, and for typical sorting methods, the costs are: 
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for strategy 1: O(a log a + b log a); 

for strategy 2: O(a log a + b log b + a + b)... . 

In a number of similar situations, it appears thus that, apart from the sizes of the 
tiles on which one operates (i.e., the number of records), a major determinant of 
efficiency is the cardinalities of the underlying sets, i.e., the number of distinct 
elements they comprise. 

The situation gets much more complex when operations like projections, selec- 
tions, multiple joins in combination with various boolean operations appear in 
queries. As an example, the relational system system R has a sophisticated query 
optimiser. In order to perform its task, that programme keeps several statistics on 
relations of the data base. The most important ones are the sizes of relations as well 
as the number of different elements of some key fields [8]. This information is used 
to determine the selectivity of attributes at any given time in order to decide the 
choice of keys and the choice of the appropriate algorithms to be employed when 
computing relational operators. The choices are made in order to m inimise a cer- 
tain cost function that depends on specific CPU and disk access costs as well as 
sizes and cardinalities of relations or fields. In system R, this information is 
periodically recomputed and kept in catalogues that are companions to the data 
base records and indexes. 

In this paper, we propose efficient algorithms to estimate the cardinalities of mul- 
tisets of data as are commonly encountered in data base practice. A trivial method 
consists in determining card(M) by building a list of all elements of M  without 
replication; this method has the advantage of being exact but it has a cost in num- 
ber of disk accesses and auxiliary storage (at least O(a) or O(a log a) if sorting is 
used) that m ight be higher than the possible gains which one can obtain using that 
information. 

The method we propose here is probabilistic in nature since its result depends on 
the particular hashing function used and on the particular data on which it 
operates. It uses m inimal extra storage in core and provides practically useful 
estimates on cardinalities of large collections of data. The accuracy is inversely 
related to the storage: using 64 binary words of typically 32 bits, we attain a typical 
accuracy of 10%; using 256 words, the accuracy improves to about 5 % . The per- 
formances do not degrade as files get large: with 32 bit words, one can safely count 
cardinalities well over 100 m illion. The only assumption made is that records can be 
hashed in a suitably pseudo-uniform manner. This does not however appear to be a 
severe lim itation since empirical studies on large industrial files [S] reveal that 
careful implementations of standard hashing techniques do achieve practically 
uniformity of hashed values. Furthermore, by design, our algorithms are totally 
insensitive to the replication structures of files: as opposed to sampling techniques,’ 

’ The simplest sampling algorithm is: take a sample of size No of a file of size N. Estimate the car- 
dinality v,, of the sample using any direct algorithm and return vO(N/No) as estimate of the cardinality of 
the whole file. 
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the result will be the same whether elements appear a million times or just a few 
times. 

From a more theoretical standpoint, these techniques constitute yet another 
illustration of the gains that may be achieved in many situations through the use of 
probabilistic methods. We mention here Morris’ approximate counting algorithm 
[6] which maintains approximate counters with an expected constant relative 
accuracy using only 

log, log, n + O( 1) 

bits in order to count up to n. Morris’ algorithm (see [2] for a detailed analysis 
that has analogies to the present paper) may be used to reduce by a factor of 2 the 
memory size necessary to store large statistics on a large number of events in com- 
puter systems. 

The structure of the paper is as follows: in Section 2, we describe a basic counting 
procedure called COUNT that forms the basis of our algorithms. It may be worth 
noting that non-trivial analytic techniques enter the justification, and actually the 
design, of the algorithms; these techniques are also developed in Section 2. Section 3 
presents the actual counting algorithms based on this COUNT procedure and on 
the probabilistic tools of Section 2. Finally, Section 4 concludes with several 
indications on contexts in which the methods may be used: most notably they can 
be employed on the fly as well as in the context of distributed processing with 
minimal exchanges of information between processors and without any degradation 
of performances. Preliminary results about this work have been reported in [3]. 

2. A PROBABILISTIC COUNTING PROCEDURE AND ITS ANALYSIS 

The Basic Counting Procedure 

We assume here that we have at our disposal a hashing function hash of the type: 

function hash(x: records): scalar range [0 .,. . 2L - 11, 

that transforms records into integers sufficiently uniformly distributed over the 
scalar range or equivalently over the set of binary strings of length L. For y any 
non-negative integer, we define bit( y, k) to be the kth bit in the binary repesen- 
tation of y, so that 

y = 1 bit(y, k)2k. 
k>O 

We also introduce the function p(y) that represents the position of the least 
significant l-bit in the binary representation of y, with a suitable convention for 
P(o): 
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,o( y) = mi; bit( y, k) # 0 if y>O 

= L if y = 0. 

(Thus ranks are numbered starting from zero.) 
We observe that if the values hash(x) are uniformly distributed, the pattern 

Ok1 ... appears with probability 2-k-‘. The idea consists in recording observations 
on the occurrence of such pattrns in a vector BZTMAP[O . . . L - 11. If M is the mul- 
tiset whose cardinality is sought, we perform the following operations: 

for i :=0 to L- 1 do BZTMAP[i] :=O; 
for all x in A4 do 

begin 
index := p(hash(x)); 
if BZ7’MAP[index] = 0 then BZZ’MAP[index] := 1; 
end; 

Thus BZTMAP[i] is equal to 1 iff after execution a pattern of the form 0’1 has 
appeared amongst hashed values of records in M. Notice that by construction, vec- 
tor BITMAP only depends on the set of hashed values and not on the particular 
frequency with which such values may repeat themselves. 

From the remarks concerning pattern probabilities, we should therefore expect, if 
n is the number of distinct elements in M that BZTMAP[O] is accessed 
approximately n/2 times, BZTMAP[ l] approximately n/4 times . . . . Thus at the end 
of an execution, BZTMAP[i] will almost certainly be zero if iglog, n and one if 
i<log, n with a fringe of zeros and ones for izlog, n. As an example, we took as A4 
the on-line documentation corresponding to Volume 1 of the manual of the Unix 
system on one of our installations. M consists here of 26692 lines of which 16405 
were distinct. Considering these lines as records and hashing them through stan- 
dard multiplicative hashing over 24 bits (L = 24), we found the following BITMAP 
vector: 

111111111111001100000000 

The leftmost value zero appears in position 12 and the rightmost value one in 
position 15 while 2i4 = 16384. 

We propose to use the position of the leftmost zero in BITMAP (ranks start at 0) 
as an indicator of log,n. Let R be this quantity, we shall see that under the 
assumption that hashed values are uniformly distributed, the expected value of R is 
close to: 

E(R)=log,m cp =0.77351 . . . . (1) 

so that our intuition is justified. In fact the “correction factor” cp plays quite an 
important role in the design of the final algorithms we propose here. We shall also 
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prove that under reasonable probabilistic assumptions, the standard deviation of R 
is close to 

o(R)= 1.12 (2) 

so that an estimate based on (1) will typically be one binary order of magnitude off 
the exact result, a fact that calls for more elaborate algorithms to be developed in 
Section 3. 

Probability Distributions 
We now proceed to justify rigorously the above claims (1) and (2) concerning the 

distribution of the value of parameter R in the basic counting procedure. 

PROBABILISTIC MODEL. We let B denote the set of infinite binary strings. The 
model assumes that bits of elements of B are uniformly and independently dis- 
tributed. Equivalently strings can be considered as real numbers over the interval 
[O; 11, and the model assumes that the numbers are uniformly distributed over the 
interval. Functions bit and p are extended to B trivially. We denote by R, the ran- 
dom variable defined over B” (assuming independence) that is, the analogue of the 
parameter R above: 

Rnb, , x2,... , x,) = r iff (i) for all 0 <j< r there is an i such that p(x,) = j 
and (ii) for all i p(x,) #r. 

We also introduce the following notations concerning the probability distribution 
of R, under the uniform model: 

p,,.k = WR, = k); qn.k = WR, 2 k 1 

k=UR,)= c b,,., 

CT; = E((R,, - l?,J2) = c k2p,.k - a;, 

and we let v(n) denote the number of ones in the binary representation of n, so that 
for instance v(13)= v((llOl),)= 3. We have 

THEOREM 1. The probability distribution of R, is characterised by: 

qn,k = f (- 1)““’ 1-L n, 
j=O ( 1 2k 

Proof: For each integer k > 0, we define the following events (i.e., subsets of B): 

E/c= {x 1 pb)=k}; & = (x 1 p(x) > k). 
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Thus, for each k, E,,, E, ,..., Eke,, Kk form a disjoint and complete set of events. 
When n elements are drawn from B, the formal polynomial: 

Pp)=(E,+E,+ ... +E,el+Kk)” (3) 

represents the set of all possible events in the following sense: if we expand (3) 
taken as a non-commutative polynomial in its indeterminates, interpreting the sums 
as (disjoint) unions of events and the products as successions of events (each 
monomial has degree n), we obtain a complete and disjoint representation of B”. 

We are interested in obtaining from Pf) an expression for the polynomial Qr)  
that represents in a similar fashion the succession of all events corresponding to 
R, 2 k. Polynomial Q f) is formed by a subset of the noncommutative monomials 
appearing in Pp). 

Let us start with a few examples. If k = 0, we have: Pg’ = (K,)” and Qg) = Pl;). If 
k= 1, 

PI”) = (E, + K, )“, QI”‘=(E,+K,)“-R 1, 

since Q  is obtained from P is this case by taking out from P the monomial K; 
corresponding to the situation where all strings drawn have a p-value at least 1. For 
k = 2 now, we have 

Qy’= (E. + E, + KJ - (E, + KJn - (E, + KJ + K;, 

since we have to take out from P the cases where either p-value 1 or p-value 0 does 
not appear but in so doing, we have eliminated the case where all p-values are at 
least 2 (i.e., K2) twice. 

In general, for P a polynomial in the indeterminates E,, E2,..., the polynomial Q  
formed with monomials of degree at most 1 in each of the indeterminates E, can be 
obtained from P by the inclusion-exclusion type formula: 

Q=P-TP[EpO]+x P[E,,E,-tO]- 1 P[E,,E,,E,-,O]+y (4) 
i#j i#/#k 

where the notation P[x, y + 0] means the replacement of x, y by 0 in P. Thus Q !/) 
can in general be obtained by applying (4) to the expression of Pf) given by (3). 

To evaluate the probabilities qn,k, all we have to do is to take the measures ~1 of 
the events described by polynomial Q  using the rules: 

using additivity of measure ,U over disjoint sets of events as well as the relation 
p(A. B) = p(A) * p(B) since trials in B are assumed to be independent. On our 
pevious examples, we find in this way: 

4n,o = 1; 4n.l = 1 - (1)“; qn,2 = 1 - (iv - ct,” + ($Y, 
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and in general: 

(5) 
where 

C,=(-l)ql-& ... -$), 
and the sum extends to all t-tuples of integers i i, iz,..., of distinct integers in the 
interval [ l... k]. Notice that by changing the summation indexes to Z, = k - i,, 5, 
can be rewritten as: 

where now the lJ are distinct integers over the interval [0 . . . k - 11. In other words, 
we have shown that 

(6) 

Using (6) inside (5) completes the proof of the theorem. m 

We now turn to the derivation of asymptotic forms for these probabilities. 

THEOREM 2. The distribution of R, satisfies the following estimates: 

(i) Ifk<log,n-2log,logn, then 

9 n,k = 1 - O(ne-@“); 

(ii) rf k < 3 log, n, then 

qn,k= ; (1 -e-"'"/9+ 0 7 

j=O ( 1 n 

=,Fo [ ( - 1 )v(j) e -jn/2k] + 0 (7) ; 
n 

(iii) If k > $ log, n + 6, with 6 > 0, the tail of the distribution is exponential: 

Proof. The main device here consists in using repeatedly the exponential 
approximation: 

(1 -a)“ze-““. 
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inside the terms that form the expression of qn,k: 

qn,k= ; (-p 1-L n. 

j=O ( ) 2k 

189 

(7) 

We set 
n 

t(j,n,k)= 1-s : 
( ) 

(i) The case when k 6 log, n - 2 log, log n. Pulling out the 1 corresponding to 
the first term (j= 0) in (7), and noticing that, as j increases, the terms t(j, n, k) 
decrease, we find 

1-qn,,<2k 1-i . 
( ) 

n 

Since 2k < n/log2 n, we have log( 1 - l/2k)-’ > log2 n/n, and the above inequality 
becomes 

1 - qn,k < ne -logzn, 

as was to be established. 
(ii) The case when k < 2 log, n. We set here c(n) = log’ n/n. When j > .c(n)2k, 

for k in the given range, t(j, n, k) is O(e-‘“gZ”); since there are less than 2k such 
terms, and 2k = O(n3’*), we get 

qn,k = c ( - 1 )““‘t(j, n, k) + O(n312 epJog2”). (8) 

We let qi,& denote the sum that appears in (8), and we define similarly 

di.k = 
C  (_ 1 )v(I) e-W/2k, 

j < E(n)zk 

For j < .s-(n)2k, we have 

If(j , 4 k)-e-VPkl =o(~-M~( ,OC-~iWk) _ 1)) 

= O(d(n)). 

so that, since q’ and q” comprise 2ke(n) terms, 

id&k - d,ki = o(n2kE3(n))j (9) 

a quantity which is O(log6 n/G). T o d erive the final expression, all we have to do 
is to “complete the sum” in qz,&; we set 

( _ 1 )U e - Wk + E 

k>O 
(10) 
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where the error term E satisfies 

Combining Eqs. (8), (9), (lo), (11) therefore establishes the sum expression that 
appears in claim (ii) of the statement. To derive the product form, we appeal to the 
general identity 

c (-l)‘(J’q& l--j (1-q2”). 
120 ?X>O 

(iii) The case when k = $ log, n + 6. We bound the probabilities qn.k by 
observing that since the p-value k - 1 is taken at least once: 

Pr(R, > k) G 1 - (1 - 1/2k)“, 

-c 1 -exp(-2.n/2k). (12) 

In the range of values of k considered, the last expression is O(n/2k), which is itself 
of order 0(2-“/J); thus the proof of part (iii) is now completed. 1 

For the sequel we introduce the real function: 

$(X)= n (1 -em \-“)= C (-l)'(j'exp(-jx). 
/20 />O 

Thus Theorem 2 expresses essentially the existence of a sort of limiting distribution 
for the probability distribution of R,, as n gets large: 

Table I describes the values of the probabilities compared to the approximation 
given by (14). It shows excellent agreement between the qn,ls and their 
approximations. It also reveals that the tail decreases sharply (actually a decrease 
faster than that of Theorem 2 may be established). 

Asymptotic Analysis 
From Theorem 2 follows that 

LEMMA 1. The expectation 8, of R, satisfies 

(15) 
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TABLE I 

Values of Exact Probabilities (qn,J and of the Approximations (9) (in Italics) 

k=4 k=5 k=6 k=l k=8 k=9 k=lO k=ll 

loo 0.0019 0.0439 0.200 0.3452 0.2767 0.1088 0.0212 0.0020 
0.0016 0.0417 0.1985 0.3476 0.2789 0.1087 0.0209 0.0020 

k=7 k=8 k=9 k= 10 k=ll k= 12 k=l3 k= 14 

loo0 o.ooo4 0.0201 0.1389 0.3166 0.3216 0.1586 0.0388 0.0047 
0.0004 0.0200 0.1387 0.3167 0.3219 0.1586 0.0388 0.0047 

k= 10 k=ll k=l2 k= 13 k= 14 k=l5 k=l6 k= 17 

loo00 O.oool 0.0076 0.0863 0.2673 0.3469 0.2150 0.0659 0.0101 
0.0001 0.0076 0.0863 0.2673 0.3469 0.2150 0.0659 0.0101 

Note. n= 100~2~@, n= 1000~9~‘~, and n= lOC~00~2’~‘~. 

Thus the problem of estimating R,, asymptotically reduces to that of estimating 
the sum in (15), i.e., the function 

for large x. To that purpose we appeal to Mellin transform techniques whose 
introduction in the context of analysis of algorithms is due to De Bruijn (see [4, 
pp. 131 et seq.]). The Mellin transform of a function f(x) defined for x > 0, x real, 
is by definition the complex functionJ*(s) given by 

f*(s) = ML-f(x); s] = joa f(x) xs - ’ dx. (17) 

We succinctly recall the salient properties of the Mellin transform, referring the 
reader to [ I] for precise statements. The Mellin transform of a function f is defined 
in a strip of the complex plane that is determined by the asymptotic behaviours off 
at 0 and co. It satisfies the important functional property 

M[f(ax); s] = a-“f*(s). 

Finally there is a complex inversion formula 

(18) 

(19) 

where c is chosen in the strip where the integral in (17) is absolutely convergent. 
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The interest of the inversion formula is that, in many cases, it can be evaluated by 
means of the residue theorem, each residue corresponding to a term in the 
asymptotic expansion of J: 

LEMMA 2. The Mellin transform qf F(x) is for - 1 < Re(s) < 0: 

F*(s) = & N(s) T(s), 

where T(s) is the Euler Gamma function and N(s) is an entire function that is the 
analytic continuation of the function defined for Re(s) > 1 by 

N(s)= 1 w, 
i>l J 

Proof Let I+!J~(x)z $(x)- 1. The transform of $1 is for Re(s)> 1: 

l)?(s) = 1 (- l)““‘j--,Y-(s) 
121 

= N(s) r(s), (20) 

as follows from the basic functional property (18), and the fact that the transform 
of exp( -x) is the Gamma function T(s). Similarly, for $*(x) = Ii/(x) -+(x/2) and 
Re(s) > 1, we get 

$:(s) = MC$(x) - $(-42); sl = $ WN 1 - 2”). (21) 

Since t&c) - $(x/2) is exponentially small both at 0 and co, the transform +: is 
actually analytic for all complex s; since: 

we find that N(s) is analytic for all s except possibly for the points s = 2ikn/log 2, 
where the denominator of (22) vanishes. However, direct calculations in Lemma 3 
below show that N(s) is analytic for Re(s) > -1, so that N(s) is analytic 
everywhere. 

Now, using again the basic functional property, 

F*(s)= t,b$(s) 1 k2ks 
kbl 

(23) 

where (23) is valid for Re(s)<O. Putting together (20), (21), (22), (23) establishes 
the claim of the lemma. 
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We now need to establish some more constructive properties of N(s) for 
Re(s) < 0, establishing in passing the analytic continuation property of N(s) used in 
the proof of Lemma 2. 

LEMMA 3. The function N(s) satisfies N(0) = -1. Furthermore, for s = o + it and 
c7 > -0.99, it satisfies 

N(s)=0(1 + IsI’). 

Proof Terms in the definition of N(s) may be grouped 4 by 4; using the 
property 

v(4j) = v(j); v(4j+ 1) = v(4j+ 2) = 1 + v(j); v(4j+ 3) = 2 + v(j), 

we find 

N(s)= -I-“-2-“+3-” 

We observe that the general term in the above sum is 0(jj-2) as j gets large. This 
confirms that N(s) is defined and analytic when c > - 1. To obtain the bounds on 
N(s), we split the sum (24): the terms such that j< IsI* contribute at most 
O(1 + Is]“) to the sum; and since 

uniformly in s and u when u < l/Is/ 2, we find that the contribution of terms such 
that j> (s[* is 

O(lsl* C j-0-2)=O(Is12), 
i> IsI2 

uniformly in s when c > -0.99, say. Finally substituting s= 0 in (24) gives 
N(O)= -1. 1 

We can now come back to the asymptotic study of F(x) and hence of 8, using 
the inversion formula (19). 

THEOREM 3.A. The average value of parameter R, satisfies: 

R, = log,(cpn) + P(log, n) + o(l), 

where constant cp = 0.77351 . . . is given by 

m  (4p+1)(4p+2) ( 
,=,-112eyiplJl [ (4p)(4p+3) 1 1 w  

571/31/l-4 
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and P(u) is a periodic and continuous functions of u with period 1 and amplitude 
bounded by 10 5. 

Proof: By Lemma 1, the problem reduces to obtaining an asymptotic expansion 
of F(x) as x --) co up to o( 1) terms. The principle consists in evaluating the complex 
integral of the form (19) by residues. From the inversion theorem for Mellin trans- 
forms, we have 

We consider for k a positive integer the rectangle contour r, defined by its corner 
points (and traversed in that order) 

rk = [ - l/2 - i( 2k + 1) n/log 2; - l/2 + i( 2k + 1) n/log 2; 

1-i(2k+l)~/log2;1+i(2k+l)n/log2]. 

By Cauchy’s residue theorem, we have 

1 
- 1 F*(s) x~-’ ds = - c Res(F*(s)x-“). 
2i7c r, Jinrk 

For fixed x, as k gets large, the integral along the segment 
[ - l/2 - i(2k + 1) rc/log 2; - l/2 + i(2k + 1) rc/log 23 tends to F(x) by (25). From 
Lemma 3 and the exponential decrease of Z(s) towards ice, the integrals along 
[-1/2+i(2k+ l)n/log2; 1 -i(2k+ l)n/log2] and [1 +i(2k+ l)n/log2; 
- l/2 - i(2k + 1 )rc/log 21 tend to zero exponentially fast (as functions of m). As to 
the integral along [ 1 - i(2k + 1) n/log 2; 1 + i(2k + 1 )rc/log 21, it stays bounded in 
absolute value by 

1 
271 I I += ]F*(l +it)l x--’ dt<;, 

for some constant K. (Again the exponential decrease of T(s) guarantees con- 
vergence of the above integral.) We have thus found that, by letting m -+ co: 

F(x) = - c Res(F*(s)x-“) + 0 k 
Re(s)= 0 0 

I. (26) 

(The sum of residues is also absolutely convergent because of the decrease of T(s) 
towards ice.) It only remains to evaluate the residues in (26). F*(s) has a double 
pole at s = 0 and simple poles at each xk = 2ikz/log 2, with k an integer different 
from 0, and we find easily 

-Res(F*(s)x-“;s=O)=log,x+L --- 
N’(0) 1 

1og2+ log2 2’ 
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which we may rewrite as log, cpx, and 

-Res(F*(s) x-“; s = xk) = (l/log 2) r(xk) N(xk) xPXk, 

which is of the form pk e~Ziknlogzx. 
Thus summing the residues, and using (26), we find the announced asymptotic 

form for F(x) (and hence Rll), with P(u) given by 

P(u)= C pke~2ikn”. 
k~Zl{O) 

The gory details of the bound on the amplitude of P(u) are left for the Appen- 
dix. 1 

We can evaluate the standard deviation of R, in a similar fashion. Let S, be the 
second moment of R, : S, = E(Rz). As before, S, is approximated by the function 
G(n) where 

whose transform is found to be for Re(s) < 0 

2”(1 l t2”) 
G*(s) = (1 _ 2sl2 0) N(s), 

which now has a triple pole at s = 0. Computing G(z) is done from G*(s) via the 
inversion theorem followed by residue calculations, and one finds: 

THEOREM 3.B. The standard deviation of R, satisfies 

0: = c’, + Q(log, n) + o( 1 ), 

where (T o. = 1.12127... and Q(u) is a periodic function with mean value 0 and period 1. 

We can mention in passing for crm the “closed form” expression 

02 1 = m  12(log 2)2 [2n + log 2 - 12N’(O) - 12N”(O)] - 2 2 IPk12, 
k>O 

where the pk are the Fourier coefficients of P(u) defined above. 

3. PROBABILISTIC COUNTING ALGORITHMS 

We have seen in the previous section that the result R of the COUNT procedure 
has an average close to log, cpn, with a standard deviation close to 1.12. Actually 
the values of 

J(n) = (1/~)2~n 
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are amazingly close to n as the following instances show: 

A( 10) = 10.502; I*( 100) = 100.4997; A( 1000) = 1000.502. 

This observation justifies the hope of obtaining very good estimates on n from the 
observation of parameter R, using the correction factor cp. However, the dispersion 
of results corresponds to a typical error of 1 binary order of magnitude which is 
certainly too high for many applications. 

The simplest idea to remedy this situation consists in using a set H of m hashing 
functions, where m is a design parameter and computing m different BITMAP vec- 
tors. In this way, we obtain m estimates R(l), R<*),..., R’“‘. One then considers the 
average 

A=R’l’+R’*‘+ . . . +R’“> 

m (27) 

When n distinct elements are present in the file, the random variable A has expec- 
tation and standard deviation that satisfy 

E(A) z log, cpn; a(A)zo,:fi. 

Thus we may expect 2A to provide an estimate of n with a typical error (measured 
by the standard deviation of the estimates) of relative value z K/h. 

Such an algorithm using direct averaging has indeed provably good performances 
(with an expected relative error of about 10 % if m = 64) but it has the disadvantage 
of requiring the calculation of a number of hashing functions, so that the CPU cost 
per element scanned gets essentially multiplied by a factor of m. 

It turns out that an effect very similar to straight averaging may be achieved by a 
device that we call stochastic averaging. The idea consists in using the hashing 
function in order to distribute each record into one of m lots, computing 
LY = h(x) mod m. We update only the corresponding BITMAP vector of address c1 
with the “rest” of the information contained in h(x), namely h(x) div m = Lh(x)/m]. 
At the end, we determine as before the R(j)’ s and compute their average A by (27). 
Hoping for the distirbution of records into lots to be even enough, we may thus 
expect that about n/m elements fall into each lot so that (1/~)2~ should be a 
reasonable approximation of n/m. 

The corresponding algorithm is called Probabilistic Counting with Stochastic 
Averaging, or PCSA for short. It is described in Fig. 1. We claim that its cost per 
element scanned is handly distinguishable from that of the COUNT procedure and 
its relative accuracy improves with m roughly as 0.78/& In the sequel, we shall 
call standard error the quotient of the standard deviation of an estimate of n by the 
value of n; this quantity is thus a precise indication of the expected relative accuracy 
of an algorithm estimating n. Neglecting periodic fluctuations of extremely small 
amplitude (less than lo-‘), we shall call the bias of an algorithm the ratio between 
the estimate of n and the exact values of n for large n. Standard error and bias of 
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program PCSA;  

const nmap = 64; Iwith nmap = 64, accuracy is typically 1 O# 

lnmap corresponds to variable m  in the analysisj 
(D = 0.77351 [the magic constant{; marlength = 32; 
[with mnzlength =32 (==.L). one can count up to lo*.{ 

var M. multiset of data of type records; 
z: recwds; hashedz. index, a. R, S, 3: integw; 
B ITMAPS array [ O..nmap- 19 mazlengfh- f] of integer: 

function getelement(var trecosds); 

[reads an element z of type records from file Mj  
function hash(zrecords).integer; 

Ihashes a record z into an integer over scalar range [O. 2mPrrmgrh-l]j 
functionp(y.integer).integer: 

lreturns the position of the first l-bit in y; ranks start at 0.1 

begin 

while not co/(M) do 

begin 

getelement( hashe&:=hash(r); 

a:=hashedz mod nmap; indez:=p(hashedz div nmap); 

if BITMAfia.indez]=O then BITMAqa,indez]:=l; 

end: 

s = 0; 

for i:=O to nmap- 1 do 

begin 

R:=O; while (BITMAFfi.R]=l) and (R<ma.zlength) do R:=R+l; S  =S+R: 

end; 

E:=tru”c(nmap/~ e l ys/ *map)); 

IResult 3 of the PCSA programme that estimates n I 
end. 

FIG. 1. Probabilistic counting with stochastic averaging (PCSA). 

TABLE II 

Bias and Standard Error of PCSA for Several Values of 
m, the Number of BITMAP Vectors Used 

m  Bias %  Standard error 

2 1.1662 61.0 
4 1.0792 40.9 
8 1.0386 28.2 

16 1.0191 19.6 
32 1.0095 13.8 
64 1.0047 9.7 

128 1.0023 6.8 
256 1.0011 4.8 
512 l.oco5 3.4 

1024 1.0003 2.4 
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algorithm PCSA for various values of the design parameter m are displayed in 
Table II. 

In the remainder of this section, we are going to justify these claims rigorously 
and in particular show how the estimates of Table II are deduced. 

We let Z denote the random variable computed by PCSA with m BITMAPS and 
let 3, denote this random variable when n distinct elements are present in the file; 
we denote by E[Z”,] the average value of ED and cr(Z:,) the standard deviation of 
E-,. We propose to establish: 

THEOREM 4. The estimate Z-, of algorithm PCSA has average value that 
satisfies’: 

E[snl=% [i& ( m) ( m) 
N -1 r -!- (l-,--I’m) m+nP,,(log2n)+o(n); ] 

the second moment of Z,, satisfies 

EIm=$[&$ -~)r( -;i;) (l-2 -‘-~)l”+n*~~(log2n)+o(n’). 

In the above expressions P, and Q,,, represent periodic functions with period 1, mean 
value 0 and amplitude bounded by 10 ~- ‘. 

THEOREM 5. Using the notation u(n) E v(n) to express the property 

3n,Vn>n, iu(n)-v(n)l< lOpi 

one has the following characterisations of the bias and standard error of algorithm 
PCSA : 

F=(l+c(m)) 

~CKII --v(m), n 

where quantities E(m) and g(m) satisfy as m gets large: 

where 

log2 2 *=&$v(o)‘-W(O)+,. 
’ The error terms in Theorem 4 and the n, in Theorem 5 are not uniform in tn. 



PROBABILISTIC COUNTING ALGORITHMS 199 

The Analysis of Algorithm PCSA 
We now proceed with the proof of Theorem 4. We start with an estimate of 

E[j”“] for 1 </I 6 2 that is needed throughout the rest of this section and prove 

LEMMA 4. Setting fl= 2l1‘7, with q > 1, one has for fixed q 

E[fiRn] = n”q(dq + P,(log, IZ)) + o(n’lq), 

d,= - &w4+3of) 

and P, is a periodic function of amplitude less than 10p5. 

Proof: (i) We start with a strenghening of bounds on the tail of the distribution 
of R,. Consider the probability Pr[R, > k] where k = ilog, n + 6, with 6 > 0. When 
R, > k, positions (k- 1) and (k - 2) of BITMAP are set to 1, an event that has 
probability 

a quantity which is 
1 _  e-n/2k + O(n/2=) _ e-n/2k-’ + O(n/2*‘) + ,-3&’ + O(n/2*) 

or O(n/22k), which in the given range of values of k is O(n-3’24--5). Thus 

k > (5/4)logzn 

2kp,,k = 0 (n514-312 ,;, 4p6 26) = O(n-‘I”), (28) 

and the same bound applies if 2 is replaced by b in the above sum. 
We now consider the error that comes from the replacement of the pn,k by their 

asymptotic equivalent for “small” k. From the bounds of Theorem 2, one finds 

1 Pk[P”,k-*(~)+*(~)]=0(~)=0(n0.7”), (29) 

k< (5/4)loan 

a quantity which is <n . ‘lq Thus completing the sum and defining the function 

we have from (28), (29): 

E[flRn] = H(n) + O(n0.76’q). 
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The asymptotic behaviour of H is determined by Mellin transform techniques as 
before; the transform of function H is 

H*(s) = - 82” T(s) N(s). 
1 -P2” 

H* has poles at s = -l/q + 2&/log 2 and we find the claim of the lemma, using the 
inversion theorem with 

d,= -Res(H*(s);s= -l/q). 1 

The next step in the proof of Theorem 4 is to establish that algorithm PCSA 
behaves asymptotically as though the n elements were perfectly distributed in m 
groups. 

LEMMA 5. If n elements are distributed into m cells (m fixed), where the 
probability that any element goes to a given cell has probability l/m, then the 
probability that at least one of the cells has a number of elements N satisfying 

IN-n/ml >&logn 

is O(e- h’og2n) for some constant h > 0. 

Proof Set p = l/m, q = 1 - l/m; let N, be the number of elements that fall into 
cell 1. N, obeys a binomial distribution 

Pr(N, =k) = ;[- pkqnpk, 
0 

and taking logarithms of (30), for k = pn + 6 and 6 4 n, one finds 

Pr(N, = pn + 6) = exp - 

If 6 = & log n, the probability (30) is exponentially small. We conclude the proof 
by observing that the binomial distribution is unimodal and 

We can now conclude the proof of the first part of Theorem 4. Let S denote the 
sum R<‘> + RC2) + ... + R<“>. We have 

Pr(S= k) = ,,,+n2+;+n =~~(n,,n,:...,n,)P.,*,P.?.k*“‘P.~,k~. c31) 
k,+k2+ ... +km,=k 
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Thus 

E(2”‘“) = .,+~:,~+~~_,~(rr,.n~...,n,)E(2~n1’m)E(2Rn2’m)...E(2Rn~m~. (32) 

Call E the quantity (32) and E, the sum of the terms in (32) such that for all 
j, 1 <j< m: 

I I nj-- < ; &logn. 

From Lemmas 4,5, E-E, is O(ne- “‘g2”). As to the central contribution EC it is 
bounded by 

(E[2(llm)R,i,~~~~lopn I)” < ,J7, < (E[2(llm)R,/m+,iAlog~])m, 

so that finally 

E[2”‘“] = (E[2(1’m)Rnjm])m + o(n). (33) 

or 

E(B,) =; (EC2 (llm)Rn/q)m + o(n). (34) 

Equation (34) combined with Lemma 5 is sufficient to establish the estimates on .Yn 
from Theorem 4, provided we check that the amplitudes of the periodic fluctuations 
do not grow with m, a fact that can be proved using the methods described in the 
Appendix. 

Estimates on the second moment of Sn are derived in exactly the same way 
through the equality 

E(E;) =$ (E[2(2’m)Rnjm])m + o(n2). (35) 

Dependence of Results on the Number of BITMAPS 
We finally conclude with an indication of the (easy) proof of Theorem 5. From 

Theorem 4, all we need is to determine the asymptotic behaviour of the quantities 

W)=-$[&N( -i) r( -k) (2-2-2’m)]“, 

(36) 

(37) 

r(m) = (P(m) - a2(m)P2, (38) 
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as m gets large since we neglect the effect of the small periodic fluctuations. This is 
achieved by performing standard (but tedious) asymptotic expansions of (36), (37) 
(38) for large m. (This task as been carried out with the help of the MACSYMA 
system for symbolic computations.) We find that the bias and standard error arefor 
all values ofm closely approximated by the formulae 

bias: 1 +0.31/m (39) 
standard error: 0.78/A. (40) 

4. IMPLEMENTATION Issues 

There are three factors to be taken into account when applying algorithm PCSA: 

(i) The choice of the hashing function. 
(ii) The choice of the length of the BITMAP-vectors, L. 
(iii) The number, nmap, of BITMAP used (corresponding to quantity m in 

our analyses). 

Also corrections of two types may be introduced: 

(iv) Corrections to the systematic bias of Table II. 
(v) Corrections for initial nonlinearities of the algorithm. 

We briefly proceed to discuss these issues here. 

1. Hashing functions. Simulations on textual files (see below) ranging in size 
from a few kilobytes to about 1 megabyte indicate that standard multiplicative 
hashing leads to performances that do not depart in any detectable way from those 
predicted by the uniform model of Sections 2, 3. There, a record x = (x0, xi,..., xp) 
formed of ASCII characters is hashed into 

h(x) = M+ N i ord(xi) 128’ 
( 

mod 2L, 
,=o > 

with ord(rc) denoting the (standard ASCII) rank of character K. This good 
agreement between theoretically predicted and practically observed performances is 
in accordance with empirical studies concerning standard hashing techniques and 
conducted on large industrial files by Lum et al. [5]. 

2. Length of the BITMAP vector. Since the probability ditribution of the R- 
parameter has a very steep distribution, it suffices to select L in such a way that 

L > log,(n/nmap) + 4. (41) 

Thus, as already pointed out, with nmap = 64, taking L = 16 makes it possible to 
safely count cardinalities of files up to no 105, and L= 24 can be used for car- 
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dinalities well beyond 10’. The probabilities of obtaining underestimates because of 
such truncations (the probabilistic model assumes L to be infinite) can be com- 
puted from our previous results and when (41) is satisfied, the error introduced is 
below 5. 10e3. 

3. Number of BITMAPS. The expected relative accuracy of the algorithm or 
standard error is by Theorems 4, 5 inversely proportional to fi, being closely 
approximated by 

Thus nmap = 64 leads to a standard error of about lo%, and with nmap = 256, this 
error decreases to about 5 % (see Table II). 

4. Bias. The bias of algorithm PCSA as presented in Table II is negligible com- 
pared to the standard error as soon as nmap exceeds 32. If smaller values of nmap 
are to be used, it can be corrected using the results of Theorems 4, 5. For a practical 
use of the algorithm, it suffices to use the estimates of Theorem 5, which one 
achieves by changing the last instruction of the programme to 

2 := trunc(nmap/(cp*(l + 0.31/nmap))*2**(S/nmap)). 

In so doing, we obtain an algorithm which apart from the small periodic fluc- 
tuations of amplitude less than lop4 is an asymptotically unbiased estimator of car- 
dinahties n. 

5. Initial non-linearities. The asymptotic estimates which form the basis of the 
algorithm are extremely close to the actual average values as soon as n/nmap 
exceeds l&20. If very small cardinalities were to be estimated, then based on the 
characterisation of probability distributions, corrections could be computed and 
introduced in the algorithm. (These corrections would be based on calculation of 
exact average values from our formulae instead of using the asymptotic estimates). 

Simulations 

We have conducted fairly extensive simulations of algorithm PCSA applied to 
textual data. The files called man,, man* ,..., mans correspond to chapters of the on- 
line documantation available on one of our systems, and the versions mani w, 
man2 w,... correspond to the tiles obtained from the preceding ones by segmentation 
into 5 character blocks. Standard multiplicative hashing was used as described by 
Eq. (41). We counted in each case the number of different records and compared 
with corresponding values estimated by algorithm PCSA (here, a record is a line of 
text for mani ,... and a 5 letter block for man, w,...). Some sample runs are reported 
in Table III, and they show good agreement between our estimates and actual 
values. The files are mixtures of text in English, names of commands and 
typesetting commands. 

We have also taken these 16 tiles, and have subjected them to algorithm PCSA, 
varying the constants M and N in (41). This provides empirical values of the bias 
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TABLE III 

Sample Executions of Algorithm PCSA on 6 Files with the Same Multiplicative Hashing Function 

File Card. 8 16 32 64 128 256 

man 1 16405 17811 16322 14977 15982 16690 17056 
1.08 0.99 0.91 0.97 1.01 1.03 

man 1.w 38846 40145 40566 40145 43290 41230 42592 
0.96 1.01 0.96 1.07 1.02 1.06 

man 2 3149 2421 2887 3015 3015 2840 2982 
0.77 0.91 0.95 0.95 0.90 0.94 

man 2.w 10560 10590 9711 9100 9100 10032 10734 
1.00 0.91 0.86 0.86 0.95 1.01 

man 8 3075 4452 3744 3360 3252 3097 3106 
1.44 1.21 1.09 1.05 1.00 1.01 

man 8.w 11334 10590 10590 10363 10705 10999 10676 
0.93 0.93 0.91 0.94 0.97 0.94 

Note. The figure displays the file name, the exact cardinality, the estimated cardinality for nmap = 8. 
16, 32, 64, 128, 256, and the ratio of estimated cardinalities to exact cardinalities (in italics). 

and standard error of PCSA (averaging over 10 simulations x 16 tiles) that again 
appear to be in amazingly good agreement with the theoretical predictions. Such 
results are reported in Table IV and should be compared with Table II. (The 
correction for small values of nmap described above has been inserted into the 
algorithm PCSA of Fig. 1.) 

Applications to Distributed Computing 
Assume a fine F is partitioned into subtiles F,, F;!,..., F,, where the F, and Fi need 

not be disjoint. Such a situation occurs routinely in the context of distributed data 
bases. 

TABLE IV 

Empirical Values of Bias and Standard Error Based on 
160 Simulations 

m Bias % Standard error 

8 1.0169 31.92 
16 1.0104 19.63 
32 0.9798 12.98 
64 0.996 1 9.67 

128 1.0035 6.68 
256 1.0073 4.65 

Note. Ten different hashing functions applied to the 
16 files mani ,..., mans.w. 
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Then the global cardinality of file F may be determined as follows: 

Process separately each of the s subfiles by algorithm PCSA. This gives rise 
to s BITMAP vectors, BITMAP, ,..,. Each of the s processors sends its result 
to a central processor that computes the logical or of the s BITMAPS. The 
resulting BITMAP vector is then used to construct the estimate of n. 

It is rather remarkable that the accuracy of the estimate is, by construction, not 
affected at all by the way records are spread amongst subtiles. The number of 
messages exchanged is small (being O(s)), and the algorithm results in a net speed- 
up by a factor of s. 

Scrolling 

The matrix of BITMAP vectors has a rather specific form: it starts with rows of 
ones followed by a fringe of rows consisting of m ixed zeros and ones and followed 
by rows all zeros. This suggests naturally a more compact encoding of the bitmap 
that may be quite useful for distributed applications since it then m inimises the sizes 
of messages exchanged by processors. The idea is to indicate the left boundary of 
the fringe, followed by a standard encoding of the fringe itself. For instance if the 
BITMAP matrix is 

1111101000000 
1111110000000 
1111010110000 
1111110100000 

then, one only needs to represent the leftmost boundary of the fringe here 4) and 
the binary words 10100, 11000, 01011, 11010. 

This technique amounts to keeping only a small window of the BITMAP matrix 
and scrolling it is necessary. For practical pruposes, a window of size 8 should suf- 
fice, so that the storage requirement of this version of PCSA becomes close to 
$log,n + nmap bytes. 

Deletions 

If instead of keeping only bits to record the occurrences of patterns of the form 
O“l, one also keeps the counts of such occurrences, one obtains an algorithm that 
can maintain running estimates of cardinalities of tiles subjected to arbitrary 
sequences of insertions and deletions. The price to be paid is however a somewhat 
increased storage cost. 

5. CONCLUSION 

Probabilistic counting techniques presented here are particular algorithmic 
solutions to be problem of estimating the cardinality of a multiset. It is quite clear z.4 
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that other observable regularities on hashed values of records could have been used, 
in conjunction with direct or stochastic averaging. We mention is passing: 

-the rank of the rightmost one in BITMAP: this parameter has a flatter dis- 
tribution that results in an appreciably less accurate algorithm (in terms of stan- 
dard error); 

-the binary logarithm of the minimal hashed value encountered (hashed 
values being considered are real [O; 11 numbers) provides an approximation to 
log, l/n, but the resulting algorithm appears to be slightly less accurate than PCSA. 

The common feature of all such algorithms is to estimate the cardinality n of a mul- 
tiset in real time, using auxiliary storage O(m log, n) with a relative accuracy of the 
form: 

It might be of interest to determine whether appreciably better storage/accuracy 
trade-offs can be achieved (or to prove that this is not possible from an infor- 
mation-theoretic standpoint). 

For practical purposes, algorithm PCSA is quite satisfactory. It consumes only a 
few operations per element scanned (may be 20 or 30 assembly language instruc- 
tions), has good accuracy described at length in the previous sections, and may be 
used to gather statistics on files on the fly (therefore eliminating the additonal cost 
of disk accesses). On a VAX 1 l/780 running Berkeley Unix, a non-optimised ver- 
sion in Pascal used for our tests is already typically twice as fast as the standard 
system sorting routine. A version of the algorithm has been implemented at IBM 
San Jose in the context of the System R* Project. 

APPENDIX: THE AMPLITUDE OF PERIODIC FLUCTUATIONS 

The purpose of this Appendix is to show how the fluctuations, in the form of 
Fourier series, that appear in Theorems 3, 4, 5 can be precisely bounded. Notice 
that the problem reduces to showing that the Fourier coefficients have sufficiently 
small values. 

All these Fourier coefficients are values of functions of the form: 

W) N(s) w(s), 

with w(s) a “well-behaved” function, taken at points xk = 0 + 2ikrc/log 2 and k is a 
non-zero integer. Quantity (r depends on the particular problem considered: 0 = 0 
in Theorem 3, 0 = -l/m in Theorems 4, 5. 

We shall only give a proof in the case of Theorem 3.A, the other proofs being 
entirely similar. We thus need to find bounds for the Fourier series: 

P(u)= 1 pk e-2iknu 
keZ/iOI 
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with 

pk=log 2 
‘f(g&(gq. 

The behaviour of the gamma function along the imaginary axis is known: 

If(d)1 = JqGGz 

so that it decreases very fast when going away from the real axis. For instance, one 
finds with Xk = 2ikrcllog 2: 

If( = 5.45249. lo-‘; If( = 2.52468. lo- 13. 

Thus all that is required is effective bounds on IN(i These follows easily by 
refining the approach taken in the proof of Lemma 3. 

Define for x and t real, the function (see Eq. (24)): 

LEMMA. For t 3 1 and x < 3/2t, one has: 

If(x, t)l d 16x2t2. 

ProoJ: The proof depends on the following easy observations: for y 3 0: 

log(l +Y)GY (1) 

and for Iu( < 4: 

JeU- 1 - 2.4 6 IU(? 

which follows immediately from the inequality: 

(2) 

Thus rewriting the definition off in exponential form 

ftx, t)= 1 ~,-~tlog~l+x)~,-irlog(l+2x)+,-itlog(l+3.r) 

we find using (2) that, when 3xt < 4, 

(3) 

1 + 3x 
f(x, t)= -itlog (1 +x)(l +2x)fR 
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where the remainder R satisfies 

Now since 

we obtain 

IRI G t2(log2( 1 + x) + log*( 1 + 2x) + log*( 1 + 3x)) 
< 14t2x2. 

1+3x 
log (1 +x)(1 +2x) 62x2, 

(5) 

(6) 

I,f(x, t)l 6 2tx* + 14t2x2 < 16x2t2. 1 

The above lemma can be used for two purposes: (1) bounding the values of 
jN(it)l for large t; (2) bounding the truncation errors when estimating N(t) from 
the sum of its first few terms. 

COROLLARY. For all t 3 1, N(d) satisfies 

) N(it)J Q t* + 7t + 7. (7) 

Proof Consider the form (24) of N(it). With the notations of the lemma, it is 

N(if)= -1 ~“-2~~ir-3~“+ c ~ (- 1 P cr(j it) 
i2l (4.i)” 

) 

where ol(j, it) = f( 1/4j, t). Define j,(t) = max(Lt/6_1, 1) so that 1/4j, 6 3/2t. Splitting 
the sum in (8) as I,,, = XI <j<jo + Cl, <i and applying the trivial bound 
If(x, t)l <4 to the first sum and the bound of the lemma to the other one, we find 

(9) 

The modulus of N(xl) is found by direct numerical computations to be less than 
6, and one has 

N(x~)E -4.42 - 3.991’; Nh) z -6.55 - 3.17i; N(x3)z +2.75 + 1.77i. 

Thus using these values, one can check that lp,l < 0.5 10P6, I pzl < 10e9, and that 
the pk with k > 2 are much smaller and exponentially decreasing with the basis of 
the exponential equal to e-n2”og 2 ~0.6584 10-6. 
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Note added in proof: The sequence ( - 1) “(PI that occurred repeatedly here is the classical Morse- 
Thue sequence. Using the Dirichlet generating function N(s), Allouche et al. (Automates finis et series de 
Dirichlet, J. Inform. Math., Publ. Math. Universiti de Caen, 1985) have obtained several interesting 
properties of that sequence, including a proof of a curious identity of Shallit (compare with our 
Theorem 3A): 

(4p+ 1)(4p+4) 
$=t;, [ (4~+2)(4~+31] 

(-‘)“r” 
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