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Abstract. We present a 1-pass algorithm for estimating the most fre-
quent items in a data stream using very limited storage space. Our
method relies on a novel data structure called a COUNT SKETCH, which
allows us to estimate the frequencies of all the items in the stream. Our
algorithm achieves better space bounds than the previous best known
algorithms for this problem for many natural distributions on the item
frequencies. In addition, our algorithm leads directly to a 2-pass algo-
rithm for the problem of estimating the items with the largest (absolute)
change in frequency between two data streams. To our knowledge, this
problem has not been previously studied in the literature.

1 Introduction

One of the most basic problems on a data stream [HRR98,AMS99] is that of
finding the most frequently occurring items in the stream. We shall assume here
that the stream is large enough that memory-intensive solutions such as sorting
the stream or keeping a counter for each distinct element are infeasible, and
that we can afford to make only one pass over the data. This problem comes
up in the context of search engines, where the streams in question are streams
of queries sent to the search engine and we are interested in finding the most
frequent queries handled in some period of time.

A wide variety of heuristics for this problem have been proposed, all involving
some combination of sampling, hashing, and counting (see [GM99] and Section 2
for a survey). However, none of these solutions have clean bounds on the amount
of space necessary to produce good approximate lists of the most frequent items.
In fact, the only algorithm for which theoretical guarantees are available is the
straightforward SAMPLING algorithm, in which a uniform random sample of the
data is kept. For this algorithm, the space bound depends on the distribution
of the frequency of the items in the data stream. Our main contribution is a
simple algorithm with good theoretical bounds on its space requirements that
also beats the naive sampling approach for a wide class of common distributions.
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Before we present the details of our result, however, we need to introduce
some definitions. Let S = ¢1,¢qo, ..., g, be a data stream, where each ¢; € O =
{01,...,0m}. Let object 0; occur n; times in S, and order the o; so that n; >
Ng >+« > Ny, Finally, let f; = n;/n.

We consider two notions of approximating the frequent-elements problem:

FINDCANDIDATETOP (S, k, 1)

— Given: An input stream S, and integers k and [.
— Output: A list of [ elements from S such that the k& most frequent elements
occur in the list.

Note that for a general input distribution, FINDCANDIDATETOP(S, k, ) may
be very hard to solve. Suppose, for example, that ny = n;y1 + 1, that is, the
kth most frequent element has almost the same frequency as the [ + 1st most
frequent element. Then it would be almost impossible to find only [ elements
that are likely to have the top k elements. We therefore define the following
variant:

FINDAPPROXTOP (S, k, ¢)

Given: An input stream S, integer k, and real e.
Output: A list of k elements from S such that every element ¢ in the list has
n; > (1 — e)ng.

A somewhat stronger guarantee on the output is that every item o; with n; >
(1 + €)ng will be in the output list, w.h.p.. Our algorithm will, in fact, achieve
this stronger guarantee. Thus, it will only err on the boundary cases.

A summary of our final results are as follows: We introduce a simple data
structure called a COUNT SKETCH, and give a 1-pass algorithm for computing
the count sketch of a stream. We show that using a count sketch, we reliably
estimate the frequencies of the most common items, which directly yields a 1-
pass algorithm for solving FINDAPPROXTOP(S, k, €). The Sampling algorithm
does not give any bounds for this version of the problem. For the special case
of Zipfian distributions, we also give bounds on using our algorithm to solve
FINDCANDIDATETOP(S, k, ck) for some constant ¢, which beat the bounds given
by the Sampling algorithm for reasonable values of n, m and k.

In addition, our count sketch data structure is additive, i.e. the sketches for
two streams can be directly added or subtracted. Thus, given two streams, we
can compute the difference of their sketches, which leads directly to a 2-pass
algorithm for computing the items whose frequency changes the most between
the streams. None of the previous algorithms can be adapted to find max-change
items. This problem also has a practical motivation in the context of search
engine query streams, since the queries whose frequency changes most between
two consecutive time periods can indicate which topics people are currently most
interested in [Goo].



We defer the actual space bounds of our algorithms to the Section 4. In
Section 2, we survey previous approaches to our problem. We present our algo-
rithm for constructing count sketches in Section 3, and in Section 4, we analyze
the space requirements of the algorithm. In Section 4.2, we show how the algo-
rithm can be adapted to find elements with the largest change in frequency. We
conclude in Section 5 with a short discussion.

2 Background

The most straightforward solution to the FINDCANDIDATETOP(S, k,1) prob-
lem is to keep a uniform random sample of the elements stored as a list of
items plus a counter for each item. If the same object is added more than once,
we simply increment its counter, rather than adding a new object to the list.
We refer to this algorithm as the SAMPLING algorithm. If x is the size of the
sample (counting repetitions), to ensure that an element with frequency fi ap-
pears in the sample, we need to set z/n, the probability of being included in
the sample, to be x/n > O(logn/ng), thus x > O(logn/fr). This guaran-
tees that all top k elements will be in the sample, and thus gives a solution
to FINDCANDIDATETOP(S, k, O(logn/ f)).

Two variants of the basic sampling algorithm were given by Gibbons and
Matias [GM98]. The concise samples algorithm keeps a uniformly random sam-
ple of the data, but does not assume that we know the length of the data stream
beforehand. Instead, it begins optimistically assuming that we can include ele-
ments in the sample with probability 7 = 1. As it runs out of space, it lowers 7
until some element is evicted from the sample, and continues the process with
this new, lower 7/. The invariant of the algorithm is that, at any point, each
item is in the sample with the current threshold probability. The sequence can
be chosen arbitrarily to adapt to the input stream as it is processed. At the end
of the algorithm, there is some final threshold 7y, and the algorithm gives the
same output as the Sampling algorithm with this inclusion probability. However,
the value of 77 depends on the input stream in some complicated way, and no
clean theoretical bound for this algorithm is available.

The counting samples algorithm adds one more optimization based on the
observation that so long as we are setting aside space for a count of an item in
the sample anyway, we may as well keep an exact count for the occurrences of the
item after it has been added to the sample. This change improves the accuracy
of the counts of items, but does not change who will actually get included in the
sample.

Fang et al. [FSGM™96] consider the related problem of finding all items in a
data stream which occur with frequency above some fixed threshold, which they
call iceberg queries. They propose a number of different heuristics, most of which
involve multiple passes over the data set. They also propose a heuristic 1-pass
multiple-hash scheme which has a similar flavor to our algorithm.

Though not directly connected, our algorithm also draws on a quite sub-
stantial body of work in data stream algorithms [FKSV99,FKSV00,GG'02]



[GMMOO00,HRR98,Ind00]. In particular, Alon, Matias and Szegedy [AMS99] give
an {2(n) lower bound on the space complexity of any algorithm for estimating
the frequency of the largest item given an arbitrary data stream. However, their
lower bound is brittle in that it only applies to the FINDCANDIDATET OP(S, 1, 1)
problem and not to the relaxed versions of the problem we consider, for which
we achieve huge space reduction. In addition, they give an algorithm for esti-
mating the second frequency moment, F» = X n?, in which they use the idea
of random +1 hash functions that we use in our algorithm (see also [Ach01]).

3 The CounT SKETCH Algorithm

Before we give the algorithm itself, we begin with a brief discussion of the intu-
ition behind it.

3.1 Intuition

Recall that we would like a data structure that maintains the approximate counts
of the high frequency elements in a stream and is compact.

First, consider the following simple algorithm for finding estimates of all n;.
Let s be a hash function from objects to {4+1, —1} and let ¢ be a counter. While
processing the stream, each time we encounter an item ¢;, update the counter
c¢+= s[¢;]. The counter then allows us to estimate the counts of all the items
since E[c- s[g;]] = n;. However, it is obvious that there are a couple of problems
with the scheme, namely that, the variance of every estimate is very large, and
O(m) elements have estimates that are wrong by more than the variance.

The natural first attempt to fix the algorithm is to select ¢t hash functions
$1,...,8¢ and keep t counters, c1,...,c;. Then to process item ¢; we need to set
¢;j+= s;lqi], for each j. Note that we still have that each Elc; - si[¢;]] = ni. We
can then take the mean or median of these estimates to achieve an estimate with
lower variance.

However, collisions with high frequency items, like 01, can spoil most esti-
mates of lower frequency elements, even important elements like og. Therefore
rather than having each element update every counter, we replace each counter
with a hash table of b counters and have the items update different subsets of
counters, one per hash table. In this way, we will arrange matters so that every
element will get enough high-confidence estimates — those untainted by colli-
sions with high-frequency elements — to estimate its frequency with sufficient
precision.

As before, E[h;[q] - s[g]] = ng. We will show that by making b large enough,
we will decrease the variance to a tolerable level, and that by making ¢ large
enough — approximately logarithmic in n — we will make sure that each of the
m estimates has the desired variance.



3.2 Our algorithm

Let t and b be parameters with values to be determined later. Let hq,..., h; be
hash functions from objects to {1,...,b} and s1,...,s: be hash functions from
objects to {4+1,—1}. The CountSketch data structure consists of these hash
functions along with a ¢ x b array of counters, which should be interpreted as an
array of ¢ hash tables, each containing b buckets.

The data structure supports two operations:

AbpD(C, q): For i € [1,t], hi[q]+= si[q]-
ESTIMATE(C, q): return median;{h;[q] - si[q]}

Why do we take the median instead of the mean? The answer is that even
in the final scheme, we have not eliminated the problem of collisions with high-
frequency elements, and these will still spoil some subset of the estimates. The
mean is very sensitive to outliers, while the median is sufficiently robust, as we
will show in the next section.

Once we have this data structure, our algorithm is straightforward and sim-
ple to implement. For each element, we use the CountSketch data structure to
estimate its count, and keep a heap of the top k elements seen so far. More
formally:

Given a data stream qy,...,qy, for each j =1,... n:

1. Apbp(C,g;)

2. If g; is in the heap, increment its count. Else, add ¢; to the heap if
ESTIMATE(C, g;) is greater than the smallest estimated count in the heap.
In this case, the smallest estimated count should be evicted from the heap.

This algorithm solves FINDAPPROXTOP(S, k, €), where our choice of b will
depend on €. Also, notice that if two sketches share the same hash functions
— and therefore the same b and ¢ — that we can add and subtract them. The
algorithm takes space O(tb + k). In the next section we will bound ¢ and b.

4 Analysis

To make the notation easier to read, we will sometimes drop the subscript of
¢; and simply write ¢, when there is no ambiguity. We will further abuse the
notation by conflating ¢ with its index 1.

We will assume that each hash function h; and s; is pairwise independent.
Further, all functions h; and s; are independent of each other. Note that the
amount of randomness needed to implement these hash functions is O(tlogm).
We will use t = O (1og %), where the algorithm fails with probability at most d.
Hence the total randomness needed is O (1ogm10g %)

Consider the estimation of the frequency of an element at position ¢ in the
input. Let n4(¢) be the number of occurrences of element ¢ up to position £. Let
A;[q] be the set of elements that hash onto the same bucket in the ith row as
q does, i.e. Ailg] = {¢' : ¢ # ¢, hil¢'] = hi[q]}. Let A7*[q] be the elements of



A;[q] other than the k most frequent elements, i.e. A7"[q] = {¢' : ¢ # ¢.¢ >
k,hilg'] = hilg]}. Let vilg] = 3= ca,g nZ,. We define v;*[g] analogously for
A7"a).

Lemma 1. The variance of h;[q]s;[q] is bounded by v;[q].

m 2
2=kt "y

Lemma 2. E[v;*[q]] = 7

m 2
- 8 =1 Ny

Let SMALL-VARIANCE;[g] be the event that v *[g] < , . By the

Markov inequality,

Pr[SMALL-VARIANCE;[¢]] > 1 —

(1)

oo | =

Let NO-COLLISIONS;[g] be the event that A;[g] does not contain any of the
top k elements.

If b > 8k,
1
Pr[No-COLLISIONS;[¢]] > 1 — 3 (2)
Let SMALL-DEVIATION;[g](¢) be the event that
|hilglsilal — ng(OF < 8 Var[hilq]si[q]].
Then,
1
Pr[SMALL-DEVIATION;[¢](¢)] > 1 — 3 (3)
By the union bound,
Pr[No-COLLISIONS;[¢] and SMALL-VARIANCE;]g] (4)

and SMALL-DEVIATION;[¢]] >

co| Ut

We will express the error in our estimates in terms of a parameter ~y, defined
as follows:

PSR
7=\ = (5)

Lemma 3. With probability (1 — 2),

n

|median{hi[q]si[q]} —nq(L)] < 8 (6)



Proof. We will prove that, with high probability, for more than % indices i € [1,¢],

|hilglsila) = nq(£)] <8y

This will imply that the median of h;[g]s;[g] is within the error bound claimed by
the lemma. First observe that for an index 4, if all three events NO-COLLISIONS;[¢],
SMALL-VARIANCE;[g], and SMALL-DEVIATION;[g]] occur, then |h;[g]s;i[qg]—nq ()| <
8v. Hence, for a fixed 1,

Pr{[hilglsila] — nq(O)] < 87] >

co| Ut

The expected number of such indices i is at least 5¢/8. By Chernoff bounds, the

number of such indices i is more than ¢/2 with probability at least 1 — e©®).
Setting t = £2(log(n) + log(4)), the lemma follows.
Lemma 4. With probability 1 — &, for all £ € [1,n],

[median{hilglsila]} — ne(£)] < 87 (7)

where q is the element that occurs in position £.
m 2
32 ¢ =kr1 Mg

(enk)Q

ments occur at least (1 — €)ny, times in the sequence; further all elements with
frequencies at least (1 4 €)ny occur amongst the estimated top k elements.

Lemma 5. If b > 8max | k, , then the estimated top k ele-

Proof. By Lemma 4, the estimates for number of occurrences of all elements
are within an additive factor of 8y of the true number of occurrences. Thus
for two elements whose true number of occurrences differ by more than 16+, the
estimates correctly identify the more frequent element. By setting 16y < eny, we
ensure that the only elements that can replace the true most frequent elements
in the estimated top k list are elements with true number of occurrences at least
(1 — E)Hk.

16y < eng

g =1 My
= 16 Q*T*q < eny,

m 2
s 2563 1 Ny
- (eng)?

This combined with the condition b > 8k used to prove (2), proves the lemma.
We conclude with the following summarization:

Theorem 1. The COUNT SKETCH algorithm solves FINDAPPROXTOP (S, k, €)

in space
m 2
n E I —k+1 nq, n
O | klog - + == 9% log —
( BT (eni)?° 5)



4.1 Analysis for Zipfian distributions

Note that in the algorithm’s (ordered) list of estimated most frequent elements,
the k most frequent elements can only by preceded by elements with number of
occurrences at least (1 — €)ny. Hence, by keeping track of [ > k estimated most
frequent elements, the algorithm can ensure that the most frequent & elements
are in the list. For this to happen ! must be chosen so that n;41 < (1 — €)ng.
When the distribution is Zipfian with parameter z, [ = O(k) (in fact | = k/(1 —
€)1/#). If the algorithm is allowed one more pass, the true frequencies of all the
[ elements in the algorithms list can be determined allowing the selection of the
most frequent k elements.

In this section, we analyze the space complexity of our algorithm for Zipfian
distributions. For a Zipfian distribution with parameter z, n, = q% for some
scaling factor c¢. (We omit ¢ from the calculations)!. We will compare the space
requirements of our algorithm with that of the sampling based algorithm for
the problem FINDCANDIDATETOP(S, k,1). We will use the bound on b from
Lemma 5, setting € to be a constant so that, with high probability, our algo-
rithms’ list of [ = O(k) elements is guaranteed to contain the most frequent &
elements. First note that

m m 1 O(ml_QZ), z < %
Z n, = Z — = O(logm), z= 7
@ =k+1 v (4) O(k'=2%), 2> 3

Substituting this into the bound in Lemma 5 (and setting € to be a constant),
we get the following bounds on b (correct up to constant factors). The total space
requirements are obtained by multiplying this by O(log %).

Case 1: z < %
b= m172zk22

Case 2: z =

N[—=

b=klogm

Case 3: z >

N[—=

b=~k

We compare these bounds with the space requirements for the random sam-
pling algorithm. The size of the random sample required to ensure that the k
most frequent elements occur in the random sample with probability 1 — ¢ is

2 1og(k/5).
N

We measure the space requirement of the random sampling algorithm by the
expected number of distinct elements in the random sample. (Note that the size

! While ¢ need not be a constant, it turns out that all occurrences of ¢ cancel in our
calculations, and so, for ease of presentation, we omit them from the beginning.



of the random sample could be much larger than the number of distinct elements
due to multiple copies of elements).

Furthermore, the sampling algorithm as stated, solves the
FINDCANDIDATETOP(S, k, x), where z is the number of distinct elements in the
sample. This does not constitute a solution of FINDCANDIDATET OP(S, k, O(k)),
as does our algorithm. We will be reporting our bounds for the latter and the
sampling bounds for the former. However, this only gives the sampling algorithm
an advantage over ours.

We now analyze the space usage of the sampling algorithm for Zipfians. It
turns out that for Zipf parameter z < 1, the expected number of distinct elements
is within a constant factor of the sample size. We analyze the number of distinct
elements for Zipf parameter z > 1.

Items are placed in the random sample S with probability

Prige 8] =1- <1—M)”q

N

log(k/d)
ng .

n

NE

Pr[qES]zZl—

q=1

)
oo (1 5252)
o[+ fo3))

The bounds for the two algorithms are compared in Table 1.

E[no. of distinct elements in S] =

= (1 - log(k/5)>nq

Q
I
-

I
NE
o

LR
S

Q

Zipf parameter|random sampling|Count Sketch Algorithm
z < % m(%) logg m' 22 log%
2:5 \/kmlogg klogmlog%

%<z<1 m(%) logkg klog%
z=1 klogmlog — klogE
15 )

k\ =z n

1 k(log — klog —

z > ( og 6) og 5

Table 1. Comparison of space requirements for random sampling vs. our algorithm



4.2 Finding items with largest frequency change

For object ¢ and sequence S, let n? be the number of occurrences of ¢ in S.
Given two streams Sy, So, we would like to find the items ¢ such that the values
of |n;192 — nq51| are the largest amongst all items g. We can adapt our algorithm
for finding most frequent elements to this problem of finding elements whose
frequencies change the most.

We make two passes over the data. In the first pass, we only update counters.
In the second pass, we actually identify elements with the largest changes in
number of occurrences.

We first make a pass over Sy, where we perform the following step:

For each ¢, for i € [1,¢], hi[q]—= si[q].
Next, we make a pass over Sa, doing the following;:
For each ¢, for ¢ € [1,¢], hi[¢]+= s:[q].

We make a second pass over S; and Ss:
For each ¢,

1. 7y = median{h;[q]si[q]}
2. Maintain set A of the [ objects encountered with the largest values of |fi4].

3. For every item ¢ € A maintain an exact count of the number of occurrences
in S7 and Ss.

(Note that though A can change, items once removed are never added back.
Thus accurate exact counts can be maintained for all ¢ currently in A).
Finally, we report the k items with the largest values of |n§2 — nq51| amongst
the items in A.
We can give a guarantee similar to Lemma 5 with n, replaced by A, =
Ingt —ns>|.

5 Conclusions

We make a final note comparing the Count Sketch algorithm with the Sam-
pling algorithm. So far, we have neglected the space cost of actually storing the
elements from the stream. This is because different encodings can yield very
different space use. Both algorithms need counters that require O(logn) bits,
however, we only keep k objects from the stream, while the Sampling algorithm
keeps a potentially much larger set of items from the stream. For example, if the
space used by an object is ¥, and we have a Zipfian with z = 1, then the sam-
pling algorithm uses O(k logm log %W) space while the Count Sketch algorithm
uses O(klog % + k¥) space. If ¥ >> logn, as it will often be in practice, this
give the Count Sketch algorithm a large advantage over the Sampling algorithm.

As for the max-change problem, we note that there is still an open problem of
finding the elements with the max-percent change, or other objective functions
that somehow balance absolute and relative changes.
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