CSE 410: Midterm Review

CSE 410: Midterm Review

March 1, 2024

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
L Exam Logistics

Exam Day

m Do have...

m Writing implement (pen or pencil)
m One note sheet (up to 8% x 11 inches, double-sided)

m You will not need...
m Computer/Calculator/Watch/etc...

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Abstract Disk API

m Disk : A collection of Files

m File : A list of pages, each of size P (~ 4K)

ﬂ file.read_page(page): Get the data on page page of the
file.

m file.write_page(page, data): Write data to page page of

the file.

M T (U\H{ - :[,.4) (omf\@“l)}

_—

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Complexity

const RECORDS_PER_PAGE = sizeof::<Record>() / PAGE_SIZE;

fn get_element(file: File, position: u32) -> Record

let page = position / RECDRDS_PE%;EAQE%//(i?/1/)_;['27

let data = file.read_page(page) ;
f__\

return get_records(data) [position 7 RECORDS_PER_PAGE] ;

@{// (/‘”WWWQ e (;)mz”/@@;b 0“)
— T 0 Com/lea Q(/

o~ W ON =

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Complexity

1 fn find_element(file: File, key: u32) -> Record
2|
3 let mut records: Vec<Record> = Vec: :new()
4 for page in (0..N) _~\
I — + /(T o
6 let data = filej;ead pagefid;); 1 |
7 for record in get_records(data) $J
8 { #2 (,7%> —
9 records/.push(record) ; '
-p g1 1100 OQ\%/D
10 I —
11 })
12 return/Lrecords.binary_search(key) OU\‘ /) d
13 } - Q—? | \§ 6

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Streaming Reads/Writes

© o N O Ot b= W N =

e e e e e e
S Ot = W N = O

. : =
struct BufferedFile { d\ﬂ) IS
file: File,

buffer: Page,

page_idx: u32, d\; MKM@

record_idx: ulé6,

¥
impl BufferedFile {

fn append(&mut self, record: Record) A
self .buffer[self.record_idx] = record;
self .record_idx ++;
if self.record_idx >= RECORDS_PER_PAGE {
self.file.write_page(self.page_idx, self.buffer);
self.record_idx = 0; self.page_idx ++;

¥
¥
¥

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Streaming Reads/Writes

1 struct BufferedFile { / I 5 /_/7 N /rfoo’@
2 file: File, (/[> ‘\j _QL fs ‘
3 buffer: Page, .

4 page_idx: u32, O ‘) m P/V)

5 record_idx: ulé6,

6|

7 impl BufferedFile {

8 fn next(&mut self) -> Record {

9 if self.record_idx >= RECORDS_PER_PAGE {

10 self.file.read_page(self.page_idx)

11 self.page_1idx += 1; self.record_idx = O

12 }

13 self.record_idx += 1

14 return self.buffer[self.record_idx - 1];

15 }

16

17|}

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Runtime vs 1O vs Memory Complexity

Complexity

((odhy

/

XS

while !input.done;

4

N g&'@/// let record axtA) ;

? 6| let i = HASH(Tecordkey) /% B:
Cﬂﬁ%.Lo buffers[i] . append(record

8 })
9& for i in (0..B) { \

S

Q) 7o

let local_sums: Map<String,f3 Man: :ne

" n group_by_sum(input: BufferedFile, output: BufferedFile) {
2 let mut buffers« Vec<BufferedFile> = Vec: :new();
3 for _i in (O. { buffers h(BufferedFile::

W

while !buf
let

buffer[i] .reset ()

<:iécal_sums[record.key += record.value;

fer[i] .done() { —
= buffer[i]\next O/

18|} }

[©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

16 for key, value in local_sums D{f ﬁ . éﬂ /’5#/5 7%713(
17 output . 21/ec rd { key, value }))

T VA4

Ot JTO

\\
pbj
- 2 J°
o =L e
\\\\\\ O —
oA
oz Z

CSE 410: Midterm Review

I—Serialization

Record Layouts

Base Address (X) Address ofg (X+|A|+\Bv\?

CSE 410: Midterm Review
I—Serialization

Record Layouts

Special Separator Characters Delimit Fields

Qe AN reqs Qi hae

CSE 410: Midterm Review
I—Serialization

Record Layouts

CSE 410: Midterm Review

I—Serialization

Record Layouts

m Fixed: Constant-size fields. Field i at byte) ,._; |Field;|.

m Delimited: Special character or string (e.g., ,) between fields.

m Indexed: Fixed-size header points to start of each field.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

I—Serialization

Page Layouts

Page Page Page

Page Page Page

" 111

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

I—Serialization

Page Layouts

m Fixed: Constant-size records. Record i at byte /- |Record|.

m Delimited: Special character or string (e.g., \n) between
records.

m Indexed: Fixed-size header points to start of each record.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

I—Serialization

Page Layouts

Packed Unpacked (Bitmap)
é Data Records é
3 3
4 i
5 5
6 6
7 7
3 Free Space 3
o 0110101..1 N
e Bit array of occupied slots

Number of Records (and size of page)

CSE 410: Midterm Review

I—Serialization

Page Layouts

Pointer to start of free space

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

LTI

7 I
. TVl '} @

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

I |
11

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

m Pass 1: Use O(K) memory for the initial buffer
m Pass 2: Merge O(K) buffers simultaneously

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

Aggregation

TREE_ID SPC_COMMON BORONAME TREE_DBH

U
180683 red n;%/ '‘Queens' 3
__—t¥red maple' =1}
204337 '@;L}' \%'ooklyn' 10

{'red m

= 1, 'honeylocust' = 1 }

315986 'Queens 21

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

Aggregation

7 - Count = 2
//37

\EZ: Count =1

3: Count =1

CSE 410: Midterm Review
I—Optimizing for IO Complexity with Bounded Memory

Aggregation

TREE_ID SPC_COMMON BORONAME TREE_DBH

204337 @ '‘Brooklyn'’
renevlocust' = 1}
204026 w t' '‘Brooklyn’

{ 'honeylocust' = 2 }

... and more

315986 @ 'Queens’

{>< >'pin oak' =1}

10 D (U ,'7@3
3 KN) Fé«”%

21

CSE 410: Midterm Review
|—Binary Search On Disk

Binary Search

I

@((° 2\'\9

CSE 410: Midterm Review
|—Binary Search On Disk

Fence Pointers

1,10 100

6300 /

/

/

6301...6400

CSE 410: Midterm Review
|—Binary Search On Disk

ISAM Index

p0 kl pl k2 p2 k3 p3 K4 p4 ... | Non-Leaf Page

I @ﬁ@)mﬁ/ﬂ?

‘

— —

Leaf Pages contain <K, RID> or <K, Record> pairs

Leaf Pages

CSE 410: Midterm Review
|—Binary Search On Disk

B4+ Tree

Like an ISAM index, but not every page needs to be full, and...
Any page (except the root) must be at least half-full

m Splitting a full page creates a half-full page.
m On deleting the gth record, steal record from adjacent page.

m If no records can be stolen, must be able to merge with an
adjacent page.

CSE 410: Midterm Review
|—Binary Search On Disk

B4+ Tree

With P records / key+pointer pairs per page:
get(k)

m O(1) Memory complexity

m O(logp(N)) IO complexity

m Contrast: O(log,(N)) in binary search

put(k, v)

m O(1) Memory complexity

m O(logp(N)) IO complexity

m O(logp(N)) reads
m O(logp(N)) writes; O(1) amortized writes

CSE 410: Midterm Review
|—Write—Optimized Data Structures

LSM Tree

Insight: Updating one record involves many redundant writes in a
B+ Tree
Building Block: Sorted Run

m Originally: ISAM Index
m Now: Sorted Array + Fence Pointers (optional Bloom Filter)

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Write—Optimized Data Structures

LSM Tree

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

In-Memory Buffer
Level 1: B records
Level 2: 2B records
Level 3: 4B records

Level i 2'T1B records

CSE 410: Midterm Review
|—Write—Optimized Data Structures

LSM Tree

put(k,v)
m Append to in-memory buffer.
m |f buffer full, sort, and write sorted run to level 1.

m If level 1 already occupied, merge sorted runs and write result
to level 2.

m If level 2 already occupied, merge sorted runs and write result
to level 3.

m If level | already occupied, merge sorted runs and write result
to level 1+1.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Write—Optimized Data Structures

LSM Tree

get(k,v)
m Linear scan for k over in-memory buffer.
m If not found, look up k in level 1.
m If not found, look up k in level 2.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Write—Optimized Data Structures

LSM Tree

update(k,v)
m exactly as put

m ... but when merging sorted runs, If both input runs contain a
key, only keep the newer copy of the record.

delete(k)
m exactly as update, but write a 'tombstone’ value.
m If get encounters a tombstone value, return "not found” .

m When merging into lowest level, can delete tombstone.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Write—Optimized Data Structures

B — € Trees

Like B4 Tree, but directory pages contain a buffer.
m Writes go to the root page buffer.

m When the root page buffer is full, move its buffered writes to
level 2 buffers.

m When a level 2 buffer is full, move its buffered writes to level
3 buffers.

m When the last directory level buffer is full, apply the writes to
the relevant leaves.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Shortcutting Reads

Set

m add(k): Updates the set.
m test(k): Returns true iff add(k) was called on the set.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Shortcutting Reads

Lossy Set

m add(k): Updates the set.
m test(k):
m Always returns true if add(k) was called on the set.
m Usually returns false if add(k) was not called on the set.

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Shortcutting Reads

Bloom Filters

m A specific implementation of a lossy set.

m O(N) memory to store N keys with a fixed false-positive rate.

m ... but with a very small constant (1 byte per key ~ 1 — 2%
false positive rate).

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review
|—Shortcutting Reads

Bloom Filters

Before
m Read file
m Find and return record for key
After
m If in-memory bloom filter returns false, return not-found

m Read file

m Find and return record for key

(©) 2024 Oliver Kennedy, The University at Buffalo, SUNY

