
CSE 410: Midterm Review

CSE 410: Midterm Review

March 1, 2024

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Exam Logistics

Exam Day

Do have...

Writing implement (pen or pencil)
One note sheet (up to 8 1

2 × 11 inches, double-sided)

You will not need...
Computer/Calculator/Watch/etc...

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Abstract Disk API

Disk : A collection of Files

File : A list of pages, each of size P (∼ 4K)

file.read page(page): Get the data on page page of the
file.
file.write page(page, data): Write data to page page of
the file.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Complexity

1 const RECORDS_PER_PAGE = sizeof::<Record>() / PAGE_SIZE;

2

3 fn get_element(file: File, position: u32) -> Record

4 {

5 let page = position / RECORDS_PER_PAGE;

6 let data = file.read_page(page);

7 return get_records(data)[position % RECORDS_PER_PAGE];

8 }

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Complexity

1 fn find_element(file: File, key: u32) -> Record

2 {

3 let mut records: Vec<Record> = Vec::new()

4 for page in (0..N)

5 {

6 let data = file.read_page(idx);

7 for record in get_records(data)

8 {

9 records.push(record);

10 }

11 }

12 return records.binary_search(key)

13 }

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Streaming Reads/Writes

1 struct BufferedFile {

2 file: File,

3 buffer: Page,

4 page_idx: u32,

5 record_idx: u16,

6 }

7 impl BufferedFile {

8 fn append(&mut self, record: Record) {

9 self.buffer[self.record_idx] = record;

10 self.record_idx ++;

11 if self.record_idx >= RECORDS_PER_PAGE {

12 self.file.write_page(self.page_idx, self.buffer);

13 self.record_idx = 0; self.page_idx ++;

14 }

15 }

16 }

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Streaming Reads/Writes

1 struct BufferedFile {

2 file: File,

3 buffer: Page,

4 page_idx: u32,

5 record_idx: u16,

6 }

7 impl BufferedFile {

8 fn next(&mut self) -> Record {

9 if self.record_idx >= RECORDS_PER_PAGE {

10 self.file.read_page(self.page_idx)

11 self.page_idx += 1; self.record_idx = 0

12 }

13 self.record_idx += 1

14 return self.buffer[self.record_idx - 1];

15 }

16 ...

17 }

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Runtime vs IO vs Memory Complexity

Complexity

1 fn group_by_sum(input: BufferedFile, output: BufferedFile) {

2 let mut buffers: Vec<BufferedFile> = Vec::new();

3 for _i in (0..B) { buffers.push(BufferedFile::new()); }

4 while !input.done() {

5 let record = input.next();

6 let i = HASH(record.key) % B;

7 buffers[i].append(record)

8 }

9 for i in (0..B) {

10 let local_sums: Map<String,f32> = Map::new()

11 buffer[i].reset()

12 while !buffer[i].done() {

13 let record = buffer[i].next();

14 local_sums[record.key] += record.value;

15 }

16 for key, value in local_sums {

17 output.append(Record { key, value })

18 } } }
© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Record Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Record Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Record Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Record Layouts

Fixed: Constant-size fields. Field i at byte
∑

j<i |Fieldj |.
Delimited: Special character or string (e.g., ,) between fields.

Indexed: Fixed-size header points to start of each field.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Page Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Page Layouts

Fixed: Constant-size records. Record i at byte i · |Record |.
Delimited: Special character or string (e.g., \n) between
records.

Indexed: Fixed-size header points to start of each record.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Page Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Serialization

Page Layouts

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

2-Pass Sort

Pass 1: Use O(K) memory for the initial buffer

Pass 2: Merge O(K) buffers simultaneously

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

Aggregation

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

Aggregation

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Optimizing for IO Complexity with Bounded Memory

Aggregation

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Binary Search On Disk

Binary Search

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Binary Search On Disk

Fence Pointers

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Binary Search On Disk

ISAM Index

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Binary Search On Disk

B+ Tree

Like an ISAM index, but not every page needs to be full, and...
Any page (except the root) must be at least half-full

Splitting a full page creates a half-full page.

On deleting the P
2 th record, steal record from adjacent page.

If no records can be stolen, must be able to merge with an
adjacent page.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Binary Search On Disk

B+ Tree

With P records / key+pointer pairs per page:
get(k)

O(1) Memory complexity

O(logP(N)) IO complexity

Contrast: O(log2(N)) in binary search

put(k, v)

O(1) Memory complexity

O(logP(N)) IO complexity

O(logP(N)) reads
O(logP(N)) writes; O(1) amortized writes

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

LSM Tree

Insight: Updating one record involves many redundant writes in a
B+ Tree
Building Block: Sorted Run

Originally: ISAM Index

Now: Sorted Array + Fence Pointers (optional Bloom Filter)

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

LSM Tree

In-Memory Buffer

Level 1: B records

Level 2: 2B records

Level 3: 4B records

Level i: 2i+1B records

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

LSM Tree

put(k,v)

Append to in-memory buffer.

If buffer full, sort, and write sorted run to level 1.

If level 1 already occupied, merge sorted runs and write result
to level 2.

If level 2 already occupied, merge sorted runs and write result
to level 3.

...

If level i already occupied, merge sorted runs and write result
to level i+1.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

LSM Tree

get(k,v)

Linear scan for k over in-memory buffer.

If not found, look up k in level 1.

If not found, look up k in level 2.

...

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

LSM Tree

update(k,v)

exactly as put

... but when merging sorted runs, if both input runs contain a
key, only keep the newer copy of the record.

delete(k)

exactly as update, but write a ’tombstone’ value.

If get encounters a tombstone value, return ”not found”.

When merging into lowest level, can delete tombstone.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Write-Optimized Data Structures

β − ϵ Trees

Like B+ Tree, but directory pages contain a buffer.

Writes go to the root page buffer.

When the root page buffer is full, move its buffered writes to
level 2 buffers.

When a level 2 buffer is full, move its buffered writes to level
3 buffers.

...

When the last directory level buffer is full, apply the writes to
the relevant leaves.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Shortcutting Reads

Set

add(k): Updates the set.

test(k): Returns true iff add(k) was called on the set.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Shortcutting Reads

Lossy Set

add(k): Updates the set.

test(k):
Always returns true if add(k) was called on the set.
Usually returns false if add(k) was not called on the set.

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Shortcutting Reads

Bloom Filters

A specific implementation of a lossy set.

O(N) memory to store N keys with a fixed false-positive rate.

... but with a very small constant (1 byte per key ≈ 1− 2%
false positive rate).

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

CSE 410: Midterm Review

Shortcutting Reads

Bloom Filters

Before

Read file

Find and return record for key

After

If in-memory bloom filter returns false, return not-found

Read file

Find and return record for key

© 2024 Oliver Kennedy, The University at Buffalo, SUNY

	Exam Logistics
	Runtime vs IO vs Memory Complexity
	Serialization
	Optimizing for IO Complexity with Bounded Memory
	Binary Search On Disk
	Write-Optimized Data Structures
	Shortcutting Reads

