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Why Study 
Databases?
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2 Queries per Second
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Interesting Problems

Databases

Algorithms Systems

TheoryHardware
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$$$
8 of the top 10  

Forbes Global 2000 
Software & Programming 

Companies  

base their business on  
 data management
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What is “Databases”?
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Databases
• How do we ask and answer questions about data?

• How do we manipulate and persist data?
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efficiencyaccuracy
multiple sources

consistency
correctness

summaries

parallelism
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Database Tools

Recipes:

Techniques:

Knowledge:

Join Algorithms 
Index Datastructures

Data Modeling 
Cost-Based Optimization

The Memory Hierarchy 
Data Consistency
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Which tools do you use  
… and when?
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This Course in a Nutshell
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What is ‘Better’?

• Declarative Queries: ‘Easy to think about’ vs ‘Fast’ 

• Data Layouts: Space vs Fast Updates vs Fast Queries 

• Parallel Updates: Reactive vs Proactive Concurrency
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Today

• Logistics: What you need to know  

• Project Outline: Build the next big data startup 

• Ways to Fail: What not to do and why 

• Intro: So what is a database anyway?
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General Course 
Information
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People

• Oliver Kennedy (okennedy@buffalo.edu) 

• Jun Chu (jchu6@buffalo.edu) 

• Nikhil Londhe (support role only)
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Syllabus & Website

Course Forum: Piazza 

Course Project: DµBStep

http://odin.cse.buffalo.edu/teaching/cse-462
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Course Structure
• Programming Assignment (50% of overall grade) 

• 4-Person Groups 

• Build a relational query engine 

• Course Content (50% of overall grade) 

• 2 Midterm Exams (5 or 10% of overall grade each) 

• Comprehensive Final Exam (20, 25, or 30% of overall grade) 

• Final Grade replaces up to 5% of each midterm’s grade 

• Homeworks due on Thursdays (10% of overall grade; drop lowest 2)
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Data µBases 
Step-by Step

(a.k.a., how to be the next ‘big’ data startup)
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Embedded Databases
• SQLite (in your browser, computer, phone, etc…) 

• Simple, easy-to-use, declarative data management 

• Critical for future tech: Part of Mobile, IoT, Web
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Embedded Databases
• SQLite (in your browser, computer, phone, etc…) 

• Simple, easy-to-use, declarative data management 

• Critical for future tech: Part of Mobile, IoT, Web

Your startup’s goal…  
        
       …build (part of) an embedded database
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Data µBases 
(Step-by Step)

I give you data (CSV Files + Schema) 

I ask you a question about the data (SQL) 

You give me an answer

19



Data µBases 
(Step-by Step)

Real World Challenge: You start with… 

… an empty GIT repository 

… open-source libraries (more on this next week)
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Data µBases 
(Step-by Step)

Real World Challenge: You get graded on your code’s… 

… correctness (do you produce the right answer) 
minimum 1/3 of grade for producing the right answer 

… speed (how fast did you produce the answer) 
+2/3 for meeting/beating the reference implementation
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DµBStep
SUBMITYou write code You push to GIT

DµBStep compiles 
your codeπ-graders run 

your code
DµBStep emails 

your group 22
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Project Outline
SQL Query Parser & 

Translator Relational Algebra

Optimizer

Execution PlanEvaluation 
Engine

Query 
Result

Statistics

A relational query processor
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Project Outline
SQL Query Parser & 

Translator Relational Algebra
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Execution PlanEvaluation 
Engine

Query 
Result

Statistics

Checkpoint 3

JSqlParser.jar
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Projects
• Checkpoint 0: “Hello World” Set-up (Due Feb 8) 

• 5% of your overall grade (free points) 

• Checkpoint 1: Basic SPJU Query Evaluation 
• 15% of your overall grade 

• Checkpoint 2: “Big” Data & Query Optimization 
• 15% of your overall grade 

• Checkpoint 3: Pre-computation 
• 15% of your overall grade

28



Those 5 free points sounded interesting…  

… what do I need to do to get them?
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5 free points
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OMGWTFBBQTooHard
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5 free points
• Create a group of up to 4 people. 

• Register your group. 

• Access your group’s GIT repository. 

• Commit a “Hello World” program. 

• Hit “Submit”
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If it doesn’t work, try again
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Submit any project as many times as you need to 
(before the deadline) 

Your grade will not go down if you submit again
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Any questions on the project?
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Ways to Fail 
(do not do these things)

• Start your project at the last minute 

• Don’t go to office hours 

• Don’t ask questions on Piazza 

• Wait until the deadline to submit for the first time 

• Cheat
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Academic Integrity
Cheating is submitting any work that you 
did not perform by yourself as if you did.

References (be sure to cite properly):
  Wikipedia, Wikibooks (or similar): OK 
Public Code:
  StackExchange (or similar): NOT OK

Discussing ideas with classmates out of class:
  “A hash index has O(1) lookups”: OK (except during exams 😇  ) 
Sharing code or answers with classmates:
  “Just have a look at how I implemented it”: NOT OK
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MOSS
Submission Overlap

(Ignoring Library Code)
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MOSS-Details
Identical Code 

Structure

Code in Case Statement Code in “Operator Class”
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Academic Integrity
Zero Tolerance: If I catch you submitting 

someone else’s code, you will fail the class.

Group Responsibility: If your teammate 
cheats on a group project, the entire group 

will be penalized.

Share Code, Share Blame: If someone else 
submits your code as their own, you will be 

penalized as well.
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Questions/Concerns?
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What does a data-
management system do?
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Data Management

Manipulation: Safely persisting and sharing data updates

Analysis: Answering user-provided questions about a dataset
What kind of tools can we give end-users? 

• Declarative Languages 
• Organizational Datastructures (e.g., Indexes)

What kind of tools can we give end-users? 
• Consistency Primitives 
• Data Validation Primitives
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Data

vs
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Data
vs

{
    "firstName": "John",
    "lastName": "Smith",
    "age": 25,
    "address": {
        "streetAddress": "21 2nd Street",
        "city": "New York",
        "state": "NY",
        "postalCode": 10021
    },
    "phoneNumbers": [
        {
            "type": "home",
            "number": "212 555-1234"
        },
        {
            "type": "fax",
            "number": "646 555-4567"
        }
    ]
}

46



Data
vs

{
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Databases exploit
the data’s structure!
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So let’s talk structure…
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Types
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Types
Integer Floating Point Number

String

List/Array

Set

Bag

Struct
Dictionary/Object
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Types
Integer Floating Point Number

String

List/Array

Set

Bag

Struct
Dictionary/Object

Primitive

Collection

Tuple
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Type Glossary
• Primitive: Basic building blocks like Int, Float, Char, String

• Tuple: Several ‘fields’ of different types. (N-Tuple = N fields) 

• A Tuple has a ‘schema’ defining names/types for each field 

• Set: A collection of unique records, all of the same type 

• Bag: An unordered collection of records, all of the same type 

• List: An ordered collection of records, all of the same type
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Relational Database Glossary
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Schema

Instance

Specifies the name 
of the relation, plus 
the name and type 

of each column

Officers(
  firstname: string,
  lastname: string,
  id: int
)

The Data

[James,    Kirk,   2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko,  2365]
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Relational Database

RelationRelationRelation

Schema

Instance

Columns
(# = degree/arity)Rows

(# = cardinality)
Specifies the name 
of the relation, plus 
the name and type 

of each column

Officers(
  firstname: string,
  lastname: string,
  id: int
)

The Data

[James,    Kirk,   2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko,  2365]

A relation is a set of tuples (rows) with the same schema



Why?

Your data is currently an  
Unordered Set of 100-attribute Tuples

Tomorrow, you’ll be repeatedly asked for 1 specific attribute  
of 5 specific rows identified by the first attribute

Can you do better?
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Why?

Better Idea: Rewrite data into a 99-Tuple of Maps keyed on 
the 1st attribute

This representation is equivalent, and better for your needs.

Declarative specs make it easier to find equivalences.
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