
CSE 462 - Databases
Oliver Kennedy

okennedy@buffalo.edu

1

mailto:okennedy@buffalo.edu

Why Study
Databases?

2

3

3

2 Queries per Second
3

Interesting Problems

Databases

Algorithms Systems

TheoryHardware

4

$$$
8 of the top 10

Forbes Global 2000
Software & Programming

Companies

base their business on
 data management

5

What is “Databases”?

6

Databases
• How do we ask and answer questions about data?

• How do we manipulate and persist data?

7

Databases
• How do we ask and answer questions about data?

• How do we manipulate and persist data?

efficiencyaccuracy
multiple sources

consistency
correctness

summaries

parallelism
7

Database Tools

Recipes:

Techniques:

Knowledge:

Join Algorithms
Index Datastructures

Data Modeling
Cost-Based Optimization

The Memory Hierarchy
Data Consistency

8

Which tools do you use
… and when?

9

This Course in a Nutshell

10

This Course in a Nutshell
There might be many correct options…

10

This Course in a Nutshell
There might be many correct options…

…but some are better than others…

10

This Course in a Nutshell
There might be many correct options…

…but some are better than others…
…for specific tasks.

10

This Course in a Nutshell
There might be many correct options…

…but some are better than others…
…for specific tasks.

How do you define ‘correct’ and ‘better’?

10

This Course in a Nutshell
There might be many correct options…

…but some are better than others…
…for specific tasks.

How do you define ‘correct’ and ‘better’?

How do you find alternatives that are correct?

10

This Course in a Nutshell
There might be many correct options…

…but some are better than others…
…for specific tasks.

How do you define ‘correct’ and ‘better’?

How do you find alternatives that are correct?

How do you find alternatives that are better?

10

What is ‘Better’?

• Declarative Queries: ‘Easy to think about’ vs ‘Fast’

• Data Layouts: Space vs Fast Updates vs Fast Queries

• Parallel Updates: Reactive vs Proactive Concurrency

11

Today

• Logistics: What you need to know

• Project Outline: Build the next big data startup

• Ways to Fail: What not to do and why

• Intro: So what is a database anyway?

12

General Course
Information

13

People

• Oliver Kennedy (okennedy@buffalo.edu)

• Jun Chu (jchu6@buffalo.edu)

• Nikhil Londhe (support role only)

14

mailto:okennedy@buffalo.edu
mailto:jchu6@buffalo.edu

Syllabus & Website

Course Forum: Piazza

Course Project: DµBStep

http://odin.cse.buffalo.edu/teaching/cse-462

15

Course Structure
• Programming Assignment (50% of overall grade)

• 4-Person Groups

• Build a relational query engine

• Course Content (50% of overall grade)

• 2 Midterm Exams (5 or 10% of overall grade each)

• Comprehensive Final Exam (20, 25, or 30% of overall grade)

• Final Grade replaces up to 5% of each midterm’s grade

• Homeworks due on Thursdays (10% of overall grade; drop lowest 2)

16

Data µBases
Step-by Step

(a.k.a., how to be the next ‘big’ data startup)

17

Embedded Databases
• SQLite (in your browser, computer, phone, etc…)

• Simple, easy-to-use, declarative data management

• Critical for future tech: Part of Mobile, IoT, Web

18

Embedded Databases
• SQLite (in your browser, computer, phone, etc…)

• Simple, easy-to-use, declarative data management

• Critical for future tech: Part of Mobile, IoT, Web

Your startup’s goal…

 …build (part of) an embedded database

18

Data µBases
(Step-by Step)

I give you data (CSV Files + Schema)

I ask you a question about the data (SQL)

You give me an answer

19

Data µBases
(Step-by Step)

Real World Challenge: You start with…

… an empty GIT repository

… open-source libraries (more on this next week)

20

Data µBases
(Step-by Step)

Real World Challenge: You get graded on your code’s…

… correctness (do you produce the right answer)
minimum 1/3 of grade for producing the right answer

… speed (how fast did you produce the answer)
+2/3 for meeting/beating the reference implementation

21

DµBStep
SUBMITYou write code You push to GIT

DµBStep compiles
your codeπ-graders run

your code
DµBStep emails

your group 22

DµBStep
SUBMITYou write code You push to GIT

DµBStep compiles
your codeπ-graders run

your code
DµBStep emails

your group 22

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

A relational query processor

23

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

A relational query processor

JSqlParser.jar

24

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Checkpoint 1

Statistics

JSqlParser.jar

25

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

Checkpoint 2

JSqlParser.jar

26

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

Checkpoint 3

JSqlParser.jar

27

Projects
• Checkpoint 0: “Hello World” Set-up (Due Feb 8)

• 5% of your overall grade (free points)

• Checkpoint 1: Basic SPJU Query Evaluation
• 15% of your overall grade

• Checkpoint 2: “Big” Data & Query Optimization
• 15% of your overall grade

• Checkpoint 3: Pre-computation
• 15% of your overall grade

28

Those 5 free points sounded interesting…

… what do I need to do to get them?

29

Those 5 free points sounded interesting…

… what do I need to do to get them?

29

http://odin.cse.buffalo.edu/dubstep/checkpoint0.html

5 free points

30

OMGWTFBBQTooHard

31

5 free points
• Create a group of up to 4 people.

• Register your group.

• Access your group’s GIT repository.

• Commit a “Hello World” program.

• Hit “Submit”

32

If it doesn’t work, try again

33

Submit any project as many times as you need to
(before the deadline)

Your grade will not go down if you submit again

34

Any questions on the project?

35

Ways to Fail
(do not do these things)

• Start your project at the last minute

• Don’t go to office hours

• Don’t ask questions on Piazza

• Wait until the deadline to submit for the first time

• Cheat

36

Ways to Fail
(do not do these things)

• Start your project at the last minute

• Don’t go to office hours

• Don’t ask questions on Piazza

• Wait until the deadline to submit for the first time

• Cheat

36

37

Academic Integrity
Cheating is submitting any work that you
did not perform by yourself as if you did.

References (be sure to cite properly):
 Wikipedia, Wikibooks (or similar): OK
Public Code:
 StackExchange (or similar): NOT OK

Discussing ideas with classmates out of class:
 “A hash index has O(1) lookups”: OK (except during exams 😇)
Sharing code or answers with classmates:
 “Just have a look at how I implemented it”: NOT OK

38

MOSS
Submission Overlap

(Ignoring Library Code)

39

MOSS-Details
Identical Code

Structure

Code in Case Statement Code in “Operator Class”
40

Academic Integrity
Zero Tolerance: If I catch you submitting

someone else’s code, you will fail the class.

Group Responsibility: If your teammate
cheats on a group project, the entire group

will be penalized.

Share Code, Share Blame: If someone else
submits your code as their own, you will be

penalized as well.

41

Questions/Concerns?

42

What does a data-
management system do?

43

Data Management

Manipulation: Safely persisting and sharing data updates

Analysis: Answering user-provided questions about a dataset
What kind of tools can we give end-users?

• Declarative Languages
• Organizational Datastructures (e.g., Indexes)

What kind of tools can we give end-users?
• Consistency Primitives
• Data Validation Primitives

44

Data

vs

45

Data
vs

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": 10021
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
]
}

46

Data
vs

{
 "firstName": "John",
 "lastName": "Smith",
 "age": 25,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": 10021
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567"
 }
]
}

Databases exploit
the data’s structure!

46

So let’s talk structure…

47

Types

48

Types
Integer Floating Point Number

String

List/Array

Set

Bag

Struct
Dictionary/Object

48

Types
Integer Floating Point Number

String

List/Array

Set

Bag

Struct
Dictionary/Object

Primitive

Collection

Tuple

49

Type Glossary
• Primitive: Basic building blocks like Int, Float, Char, String

• Tuple: Several ‘fields’ of different types. (N-Tuple = N fields)

• A Tuple has a ‘schema’ defining names/types for each field

• Set: A collection of unique records, all of the same type

• Bag: An unordered collection of records, all of the same type

• List: An ordered collection of records, all of the same type

50

Relational Database Glossary

51

Relational Database Glossary

51

Relational Database

RelationRelationRelation

Relational Database Glossary

51

Relational Database

RelationRelationRelation

Schema

Instance

Specifies the name
of the relation, plus
the name and type

of each column

Officers(
 firstname: string,
 lastname: string,
 id: int
)

The Data

[James, Kirk, 2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko, 2365]

Relational Database Glossary

51

Relational Database

RelationRelationRelation

Schema

Instance

Columns
(# = degree/arity)

Specifies the name
of the relation, plus
the name and type

of each column

Officers(
 firstname: string,
 lastname: string,
 id: int
)

The Data

[James, Kirk, 2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko, 2365]

Relational Database Glossary

51

Relational Database

RelationRelationRelation

Schema

Instance

Columns
(# = degree/arity)Rows

(# = cardinality)
Specifies the name
of the relation, plus
the name and type

of each column

Officers(
 firstname: string,
 lastname: string,
 id: int
)

The Data

[James, Kirk, 2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko, 2365]

Relational Database Glossary

51

Relational Database

RelationRelationRelation

Schema

Instance

Columns
(# = degree/arity)Rows

(# = cardinality)
Specifies the name
of the relation, plus
the name and type

of each column

Officers(
 firstname: string,
 lastname: string,
 id: int
)

The Data

[James, Kirk, 2260]
[Jean Luc, Picard, 2360]
[Benjamin, Sisko, 2365]

A relation is a set of tuples (rows) with the same schema

Why?

Your data is currently an
Unordered Set of 100-attribute Tuples

Tomorrow, you’ll be repeatedly asked for 1 specific attribute
of 5 specific rows identified by the first attribute

Can you do better?

52

Why?

Better Idea: Rewrite data into a 99-Tuple of Maps keyed on
the 1st attribute

This representation is equivalent, and better for your needs.

Declarative specs make it easier to find equivalences.

53

