Relational Algebra

Database Systems: The Complete Book
Ch 2.4 (plus preview of 15.1, 16.1)

T'he running theme...

Replace [thing] with better, but equivalent [thing].

T'he running theme...

Replace [thing] with better, but equivalent [thing].

/ N\

How can we tell If How can we tell If
[thing] is better? [thing] is equivalent?

First, a tew definitions...

* Relation (Table): A collection of Tuples of Values

Relational Data

* All tuples have the same set of attributes, or schema

* \What constraints are present on the collection”

Order Matters

Unigueness

<Spock,
<Kirk,

Lt.>
Capt.>

<Redshirt, Ensign>

<McCoy,

Lt. Cmdr>

Set

<Redshirt,
<Spock,
<Kirk,
<Redshirt,
<Redshirt,
<McCoy,

Ensign>
Lt.>
Capt.>
Ensign>
Ensign>
Lt. Cmdr>

Bag

<Kirk,
<Spock,
<McCoy,

<Redshirt,
<Redshirt,
<Redshirt,

Capt.>
Lt.>

Lt. Cmdr>
Ensign>
Ensign>
Ensign>

List

Declarative Languages

Declarative Imperative

Say how you want

Say what you want .
y y to get it
“Look at every T report,

For each week,

‘Get me the TPS reports” Sum up the sprocket count
Find that week’s S report

etc....”

C, Scala, Java,

SQL, RA, R, ... Ruby, Python, ...

Declarative languages make it
easler to explore eqguivalent
computations to find the best one.

HOwW dO you bulld a
query processor?

Project Outline

Parser & #

4t .Sal

= JSqglParser

h Trained Monkeys?
esult

SELECT
QUERY

FROM
CLAUSE

& .S

JSqlParser e=—p

SELECT
LIST

: ({0

impName | |_deptName || salary [bonus| | employee | | department | [depud] [deptid] [salary] [bonus]|:hv_sum|(deptname] [DB2%

Select empName, deptName, salary + bonus form employee E, department D
where E. deptld=D.deptld and salary + bonus > :hv_sum and deptName like ‘DB2%’

CCJSqglParser parser = new CCJSqglParser (d@_sql)
Statement stmt;
while((stmt = parser.Statement() != null) {
1f(stmt instanceof Select) { .. }
else 1f(stmt instanceof CreateTable) { .. }

SELECT
QUERY
WHERE
CLAUSE

‘i(: SC]'

= JSqlParser e=—p

FROM
CLAUSE

SELECT
LIST

impName | |_deptName || salary [bonus| | employee | | department | [depud] [deptid] [salary] [bonus]|:hv_sum|(deptname] [DB2%

Select empName, deptName, salary + bonus form employee E, department D
where E. deptld=D.deptld and salary + bonus > :hv_sum and deptName like ‘DB2%'

CCJSglParser parser = new CCJSqglParser (d@,sql)
Statement stmt;
while((stmt = parser.Statement() != null) {
1f(stmt instanceof Select) { .. }
else 1f(stmt instanceof CreateTable) { .. }

Now what?

I'ne Evaluation Pipeline

SELECT
QUERY

| / “\
mpName) [deptiame] (satary [bonus) deportment] (deptia) (deptia) [selary] (bonus) (ihw_sum) (aeptniame) [DBZ%

Select empName, deptName, salary + bonus form employee E, department D
where E. deptld=D.deptld and salary + bonus > :hv sum and deptName like ‘DB2%’

Parsed Query

Data

Morth Yew Cumerd Day Cumert Mordh

3 008 W :
(] "
3 " g
) "
8 " g
3 " :
) "
3 " g
) " ’
3 " &
3 " g
] "
3 " g
h " :
3 008 &

o Ouney mencuted successhlly

Results

Cumsert_Yeur

cvaluation Pipeline

SELECT et Y ~ - - -
QUERY ordh Yew CLumerd Day Cumert NMordhs Cumert Yes
B 3 2008 W g 2009

" : 208

FROM [wnene
CLAUSE CLAUSE 3 " g
/ (and)) "
/ - = - .
/ § 8 ‘ :
/ 3 " 8
/ .) "
’ \
3 " g
. l) "
| : . -
“ | \ | < . :
mpName) (_deptName) sslary)(bonus department] [deptia) [deptia) [salary) (bonus) [thv_sum) (deptname) [DB2% - -
0 "
Select empName, deptName, salary + bonus form employee E, department D 3 " :
b < " :
] 008 &

where E. deptld=D.deptld and salary + bonus > :hv sum and deptName like ‘DB2%’

a Queey moscited succeshdly

Parsed Query Results

Data

Done?

I'ne Evaluation Pipeline

) Meatape:
SQE‘:‘EE:J salos_date Day Morth Yew Cumerd Doy Cumert Morth Cumert Yew
- *”‘“»»‘,;_“u 1 2080319 13 3 " g 2008
FROM (WHERE 4 } ! 7] " 2008
CLAUSE CLAUSE 2 " " 2 e
] ‘ o3 .
,“’ S 4 8 " 8
/ £ n 3 " -
/ “ x‘\ ".’ b ') "
| [=
/ | \ / g n 3 " g
/ | \ / \
/] \ / a n 3 "
/ | /
/| [: \ - n s " :
/ " / ‘-\ l 1 n 3 " 8
mpName) [deptName) sslsry (bonus] [employee] (department] [deptia) [deptia) [salary] (bonus) (ihv_sum) (deptriame) [DB2%
ceptiame 1 ’ 0 "
Select empName, deptName, salary + bonus form employee E, department D 13 n J " 8
where E. deptld=D.deptld and salary + bonus > :hv sum and deptName like ‘DB2%’ " % 3 "
15 1") 008 €

g Queey moscited succeathdy

Parsed Query Results

“~—
. g

\-/

Data

Done?
o! Evaluating SQL is HARD.

I'ne Evaluation Pipeline

SELECT
QUERY

SELECT WHERE
LIST CLAUSE

mpName) [_deptieme][sstary (bonus]

(empioyee] (gepar p ep (depthame] ["DB2%

Select empName, deptName, salary + bonus form employee E, department D
where E. deptld=D.deptld and salary + bonus > :hv sum and deptName like ‘DB2%’

Parsed Query

“’T

“~ L
~ .

v

Data

) Resds | 'y Mestages

rales_date Day Morth Yo
1 [oeeds |z 3 2008
< 2080807 7 [} 208
3 208031 n 3 2008
‘ L 2008
s 7 8 2008
€ n 3 2008
7 n) X
8 1) 3 2008
9 n] X
0 Ll 3 2008
n n 3 2008
12 2080807 A | 2008
13 208431 Ll 3 2008
" 080825 S 6 2008
15 088311 1" 3 2008

o Queey moscited succesthdly

Cumert_Day
"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

Cumert_Mordh

TR EEEREEE

R R K

"

Cumert_Yeu
2008
2008
2008
2008
2008
2008
2000
2008
Jm

Results

First, transform the query into something simpler.

(simpler, but equivalent)

What's in the box?

Formal Query Languages

 Two mathematical query languages form the
basis for user-facing languages (e.g., SQL):

* Relational Algebra: Operational, usetul for
representing how queries are evaluated.

 Relational Calculus: Declarative, useful for
representing what a user wants rather than
now to compute It.

Formal Query Languages

 Two mathematical query languages form the
For basis for user-facing languages (e.g., SQL):

Now . .
* Relational Algebra: Operational, usetul for
representing how queries are evaluated.

Preliminaries

Queries are applied to Relations

Q(Officers, Ships, ..)

A Query works on fixed
... but runs on any re

relation schemas.

ation Instance

Preliminaries

Important: The result of a query is also a relation!
Q2(0Officers, Qi(Ships))

Allows simple, composable query operators

Example Instances

Captains
FirstName, LastName, Rank, Ship
‘James, Kirk, 4.0, 1701A7
‘Jean Luc, Picard, 4.0, 1701D]
'Benjamin, Sisko, 3.0, DS9 |
Kathryn, Janeway, 4.0, 74656]
'Nerys, Kira, 2.5, 75633]
FirstOfficers
FirstName, LastName, Rank, Ship
 Spock, NULL, 2.5, 1701A]
‘William, Riker, 2.5, 1701D]
 Nerys, Kira, 2.5, DS9
Chakotay, NULIL, 3.0, 74656]

L ocations

Ship, Location

(1701A, Earth
1701D, Risa
(75633, Bajor

DS99, Bajor

e g))

Relational Algebra

Operation | Sym Meaning
Selection o |Select a subset of the input rows
Projection T Delete unwanted columns
Cross-product | x Combine two relations
Set-difference | - Tuples in Rel 1, but not Rel 2
Union U | Tuples either in Rel | or in Rel 2

Also: Intersection, Join, Division, Renaming
(Not essential, but can be useful)

|7

Relational Algebra

—ach operation returns a relation!

Operations can be composed

Relational Algebra operators are closed)

Relational Algebra

S’
Data

Relational
Algebra

—
S
v

Data

Relational Algebra

A Set of Tuples

Relational [Set] Relational
Algebra Algebra

~—— A Set of Tuples
Data

Data

Relational Algebra

—_—

~—— A Set of Tuples A Bag of Tuples
Data

Relational [Set] Relational Bag Relational
Algebra Algebra Algebra

T 1 1

-

~—— A Set of Tuples A Bag of Tuples
Data

Relational Algebra

~—— A Set of Tuples ~ A Bag of Tuples A List of Tuples
Data
Relational [Set] Relational Bag Relational Extended
Algebra Alaeb Algeb Relational
. Jebrd gebra Algebra
~—— A Set of Tuples A Bag of Tuples A List of Tuples

Data

Relational Algebra

S

~—— A Set of Tuples ~ A Bag of Tuples A List of Tuples
Data
Relational [Set] Relational Bag Relational Extended
Algebra Alaeb Algeb Relational
. Jebrd gebra Algebra
~—— A Set of Tuples ~ ABagof Tuples A List of Tuples
Data

Today

Projection (1)

TTlastname, ship(CaPtai nS)

Delete attributes not in the projection list.

20

FirstName, LastName, Rank, Ship

 Spock, NULL, 2.5, 1701A]
‘William, Riker, 2.5, 1701D]
Nerys, Kira, 2.5, DS99]
'Chakotay, NULL, 3.0, 74656]

TTlastname, ship(CaPtai nS)

Projection (1)

LastName, Ship

Kirk, 1701A°
' Picard, 1701D]
'Sisko, DS9]
Janeway, 74656
Kira, 75633]

TTrank(FirstOfficers)

Delete attributes not in the projection list.

20

FirstName, LastName, Rank, Ship

 Spock, NULL, 2.5, 1701A]
‘William, Riker, 2.5, 1701D]
Nerys, Kira, 2.5, DS99]
'Chakotay, NULL, 3.0, 74656]

Projection (1)

TTlastname, ship(CaPtai nS)

LastName, Ship

Kirk, 1701A°
' Picard, 1701D]
'Sisko, DS9]
Janeway, 74656
Kira, 75633]

TTrank(FirstOfficers

Rank

[2.5]
[3.0]

Delete attributes not in the projection list.

20

Why is this strange?

FirstName, LastName, Rank, Ship

 Spock, NULL, 2.5, 1701A]
‘William, Riker, 2.5, 1701D]
Nerys, Kira, 2.5, DS99]
'Chakotay, NULL, 3.0, 74656]

Projection (1)

TTlastname, ship(CaPtai nS)

LastName, Ship

Kirk, 1701A°
' Picard, 1701D]
Sisko, DS9
Janeway, 74656]
Kira, 75633

TTrank(FirstOfficers

Rank

[2.5]
[3.0]

Delete attributes not in the projection list.

Why is this strange”

FirstName, LastName, Rank, Ship

 Spock, NULL, 2.5, 1701A]
‘William, Riker, 2.5, 1701D]
Nerys, Kira, 2.5, DS99]
'Chakotay, NULL, 3.0, 74656]

Relational Algebra on Bags:
Bag Relational Algebra

20

Why?

Projection (1)

Queries are relations

What is this (query) relation’s schema”?

TTlastname, ship(CaPtai nS)

21

Selection (o)

Selects rows that satisty the selection condition.

Orank < 3.5(Captai nS)

FirstName, LastName, Rank, Ship When dOeS SeleCtiOn need
[Benjamin, Sisko, 3.0, DS9] to eliminate duplicates”
[Nerys, Kira, 2.5, 75633]
Trlastname(O'rank> 3.5(Captain5)) What is the schema of
LastName these queries?
[Kirk

]
[Picard]
[Janeway]

22

Union, Intersection,
Set Difference

—ach takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Union: Return all tuples in either relation

TTfirstname,lastname (CaptainS) U TTfirstname,lastname (FirStOfﬁcerS)

FirstName, Lastname
[James, Kirk
[Jean Luc, Picard
[Benjamin, Sisko

[Kathryn, Janeway
[Spock, NULL
[William, Riker

[Nerys, Kira

e e e))))

[Chakotay, NULL
23

Union, Intersection,
Set Difference

—ach takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Intersection: Return all tuples in both relations

TTfirstname,lastname (CaptainS) n TTfirstname,lastname (FirStOfﬁcerS)

FirstName, Lastname
[Nerys, Kira]

24

Union, Intersection,
Set Difference

—ach takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Set Difference: Return all tuples in the first
but not the second relation

TTfirstname,lastname (CaptainS) = TTfirstname,lastname (FirStOfﬁcerS)

FirstName, LastName

James, Kirk
'Jean Luc, Picard
‘Benjamin, Sisko]
Kathryn, Janeway]

25

Union, Intersection,
Set Difference

—ach takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

What is the schema of the result
of any of these operators?

26

Cross Product

All pairs of tuples from both relations.
FirstOfficers X Locations

FirstName, LastName, Rank, (Ship), (Ship), Location

[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[Spock, NULL, 2.5, 1701A, 1701D, Risa]
[Spock, NULL, 2.5, 1701A, DS9, Bajor]
[Spock, NULL, 2.5, 1701A, 75633, Bajor]
[William, Riker, 2.5, 1701D, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[William, Riker, 2.5, 1701D, DS9, Bajor]
[William, Riker, 2.5, 1701D, 75633, Bajor]
[Nerys, Kira, 2.5, DS99, 1701A, Earth]
[Nerys, Kira, 2.5, DS9, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]
[Nerys, Kira, 2.5, DS9, 75633, Bajor]
[Chakotay, NULL, 3.0, 74656, 1701A, Earth]
[Chakotay, NULL, 3.0, 74656, 1701D, Risa]
[Chakotay, NULL, 3.0, 74656, DS99, Bajor]
[Chakotay, NULL, 3.0, 74656, 75633, Bajor]

N
~N

Cross Product

All pairs of tuples from both relations.

FirstOfficers X Locations

What is the schema of this operator’s result”

28

Cross Product

All pairs of tuples from both relations.

FirstOfficers X Locations

FirstName, LastName, Rank, (Ship), (Ship), Location

What is the schema of this operator’s result”

Naming conflict: Both relations have a ‘Ship’ field

28

Renaming

p First, Last, Rank, OShip, LShip, Location (F| I’StOfﬁ cers X Locat| on S)

First, Last, Rank, OShip, LShip, Location

29

Cross Product

Can combine with selection
(FirstOfficers X Locations)

FirstName, LastName, Rank, (Ship), (Ship), Location

[Spock, NULL, 2.5, 1701A, 1701A, Earth
[Spock, NULL, 2.5, 1701A, 1701D, Risa

[Spock, NULL, 2.5, 1701A, DS9, Bajor
[Spock, NULL, 2.5, 1701A, 75633, Bajor
[William, Riker, 2.5, 1701D, 1701A, Earth
[William, Riker, 2.5, 1701D, 1701D, Risa

[William, Riker, 2.5, 1701D, DS99, Bajor
[William, Riker, 2.5, 1701D, 75633, Bajor
[Nerys, Kira, 2.5, DS9, 1701A, Earth
[Nerys, Kira, 2.5, DS9, 1701D, Risa

[Nerys, Kira, 2.5, DS99, DS9, Bajor
[Nerys, Kira, 2.5, DS9, 75633, Bajor
[Chakotay, NULL, 3.0, 74656, 1701A, Earth
[Chakotay, NULL, 3.0, 74656, 1701D, Risa

[Chakotay, NULL, 3.0, 74656, DS99, Bajor
[Chakotay, NULL, 3.0, 74656, 75633, Bajor

30

Cross Product

Can combine with selection
o4 = 51(FirstOfficers X Locations)

FirstName, LastName, Rank, (Ship), (Ship), Location

[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]
[Chakotay, NULL, 3.0, 74656, 75633, Bajor]

30

Join

Palr tuples according to a join condition.

T[FirstName,Rank(FO) N FO.Rank < C.Rank T[FirstName,Rank(C)

FirstName, Rank, FirstName, Rank

[Spock,
[Spock,
[Spock,
[Spock,
[William,
[William,
[William,
[William,
[Nerys,
[Nerys,
[Nerys,
[Nerys,

[Chakotay,
[Chakotay,
[Chakotay,

2

W W W NDNDNMDNDMNMDDMNMDDMDMDDNDNDNDNMNDNDMDNDNDDN

.5,

- - - - ~ -

- - - - ~ -

©C O O Ur Ul L1 1 On L1l L 1 L1 U1 O
b A

James,
Jean Luc,
Benjamin,
Kathryn,
James,
Jean Luc,
Benjamin,
Kathryn,
James,
Jean Luc,
Benjamin,
Kathryn,
James,
Jean Luc,
Kathryn,

4

[S T T TS T S R S S VS I ~ Y S S G0 Rt S

.0

O O O O O O O O O O O O O o

e e))) e)) e)))) b b

There are fewer tup

31

Result schema is |
the cross product

result than cross-p

es |

more efficiently

KE

i

oi

the
roducts:
we can often compute |

Nns

(these are sometimes called ‘theta-joins’)

A special case of joins where the condition contains only equalities.

FO X Foship = Locship LOC

FirstName, LastName, Rank, (Ship), (Ship), Location

[Spock, NULL, 2.5, 1701a, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

Result schema is like the cross product, but
only one copy of each field with an equality

32

A special case of joins where the condition contains only equalities.

FO N Ship Loc

FirstName, LastName, Rank, (Ship), (Ship), Location

[Spock, NULL, 2.5, 1701a, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

Result schema is like the cross product, but
only one copy of each field with an equality

32

Equl-Joins

A special case of joins where the condition contains only equalities.

FO N Ship Loc
FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 17017, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

Result schema is like the cross product, but
only one copy of each field with an equality

Natural Joins: Equi-Joins on all fields with the same name
FirstOfficers M, Locations = FirstOfficers X Locations

32

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection c
Projection T
Cross-product X

Set-difference -

Union U
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No
Projection T
Cross-product X

Set-difference -

Union U
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No
Projection T Yes
Cross-product X

Set-difference -

Union U
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No
Projection T Yes
Cross-product X No

Set-difference -

Union U
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No

Projection T Yes

Cross-product X No

Set-difference - No
Union U
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No

Projection T Yes

Cross-product X No

Set-difference - No

Union U Yes
Join X

Which operators can create duplicates?
(Which operators behave differently in Set- and Bag-RA?)

Selection o No
Projection T Yes
Cross-product X No
Set-difference - No
Union U Yes
Join I No

Group Work

Find the Last Names of all Captains of a Ship

located on ‘Bajor’

Come up with at least 2 distinct queries that compute this.
Which are the most efficient and why?

34

Captains
FirstName, LastName, Rank, Ship
James, Kirk, 4.0, 1701A7
' Jean Luc, Picard, 4.0, 1701D]
'Benjamin, Sisko, 3.0, DS9
Kathryn, Janeway, 4.0, 74656]
 Nerys, Kira, 2.5, 75633

L ocations

Ship, Location

'1701A, Earth
(1701D, Risa
(75633, Bajor

'DS9, Bajor

e g))

Find the Last Names of all Captains of
a Ship located on ‘Bajor’

Solution 1:
TTLastName(O Location=Bajor’ (LOCations) X Captains)

Solution 2:
Temp | = OLocation="Bajor’ (LOcCations))

TemP2 — TemPI X (T[(LastName,Ship) CaptainS)

T[LastName(Tem P2)

Solution 3:
T[LastName(O-Location=‘Bajor’(CaPtainS X Locations))

35

Find the Last Names of all Captains of
a Ship located on ‘Bajor’

Solution 1:
TTLastName(O Location=Bajor’ (LOCations) X Captains)

Solution 2:
Temp | = OLocation="Bajor’ (LOcCations))

TemP2 — TemPI X (T[(LastName,Ship) CaptainS)

T[LastName(Tem P2)

Solution 3:
T[LastName(O-Location=‘Bajor’(CaPtainS X Locations))

These are all equivalent queries!

35

Not typically supported as a primitive operator,
but useful for expressing queries like:

Find officers who have visited all planets

Relation V has fields Name, Planet
Relation P has field Planet

V /P ={Name | For each Planet in P, <Name, Planet> is inV }

All Names In the Visited table who have visited
every Planet in the Planets table

36

Name, Planet
[Kirk, Earth
[Kirk, Vulcan
[Kirk, Kronos
[Spock, Earth
[Spock, Vulcan
[Spock, Romulus
[McCoy, Earth
[McCoy, Vulcan
[Scotty, Earth

\'}

e et)) e e e e

Planet
[Earth]

P

Name

[Kirk]
[Spock]
[McCoy]
[Scotty]

V/P1

37

DIVISION

Planet
[Earth]
[Vulcan]

P2

Name

[Kirk]
[Spock]
[McCoy]

V/P2

Planet

[Earth]
[Vulcan]
[Romulus]

P3

Name
[Spock]

V/P2

Division
 Not an essential operation, but a useful

shorthand.

e Also true of joins, but joins are so common
that most systems implement them
specifically

* How do we implement division using other
operators?

e Tryit! (Group Work)

38

Find the Last Names of all captains of a
ship located in Federation Territories

Affiliation

Location, Affiliation
Earth, Federation]
‘Risa, Federation]
Bajor, Bajor

T[LastName(GAfﬁIiation= ‘Federation’(LOC) DM AFfil X Cap)

39

Find the Last Names of all captains of a
ship located in Federation Territories

Affiliation

Location, Affiliation
Earth, Federation]
‘Risa, Federation]
Bajor, Bajor

T[LastName(GAfﬁIiation= ‘Federation’(LOC) DM AFfil X Cap)

But we can do this more efficiently:
T[LastName(TrShip(T[Location(O-Afﬁliation= ‘Federation’(LOC))) M Affil) X CaP)

A query optimizer can find this, given the first solution

39

Relational Algebra

A simple way to think about and work with
set-at-a-time computations.

e ... Simple = easy to evaluate
* ...Simple = easy to optimize
 Nexttime...

« SQL

