
Relational Algebra
Database Systems: The Complete Book

Ch 2.4 (plus preview of 15.1, 16.1)

The running theme…

Replace [thing] with better, but equivalent [thing].

The running theme…

Replace [thing] with better, but equivalent [thing].

How can we tell if
[thing] is better?

How can we tell if
[thing] is equivalent?

First, a few definitions…

Relational Data
• Relation (Table): A collection of Tuples of Values

• All tuples have the same set of attributes, or schema

• What constraints are present on the collection?

<Spock, Lt.>
<Kirk, Capt.>
<Redshirt, Ensign>
<McCoy, Lt. Cmdr>

Uniqueness
<Redshirt, Ensign>
<Spock, Lt.>
<Kirk, Capt.>
<Redshirt, Ensign>
<Redshirt, Ensign>
<McCoy, Lt. Cmdr>

<Kirk, Capt.>
<Spock, Lt.>
<McCoy, Lt. Cmdr>
<Redshirt, Ensign>
<Redshirt, Ensign>
<Redshirt, Ensign>

Order Matters

Set ListBag

Declarative Languages
Declarative Imperative

Say what you want Say how you want
to get it

“Get me the TPS reports”
“Look at every T report,
 For each week,
 Sum up the sprocket count
 Find that week’s S report
 etc….”

SQL, RA, R, … C, Scala, Java,
Ruby, Python, …

Declarative languages make it
easier to explore equivalent

computations to find the best one.

How do you build a
query processor?

Project Outline
SQL Query Parser &

Translator Relational Algebra

Optimizer

Execution PlanEvaluation
Engine

Query
Result

Statistics

???

Trained Monkeys?

JSqlParser.sql

JSqlParser

.sql

CCJSqlParser parser = new CCJSqlParser()
Statement stmt;
while((stmt = parser.Statement() != null) {
 if(stmt instanceof Select) { … }
 else if(stmt instanceof CreateTable) { … }
}

.sql

JSqlParser

.sql

CCJSqlParser parser = new CCJSqlParser()
Statement stmt;
while((stmt = parser.Statement() != null) {
 if(stmt instanceof Select) { … }
 else if(stmt instanceof CreateTable) { … }
}

.sql

Now what?

The Evaluation Pipeline

Parsed Query

Data

Results

The Evaluation Pipeline

Parsed Query

Data

Results

Done?

The Evaluation Pipeline

Parsed Query

Data

Results

Done?
No! Evaluating SQL is HARD.

???

The Evaluation Pipeline

Parsed Query

Data

Results

First, transform the query into something simpler.
(simpler, but equivalent)

What’s in the box?

Formal Query Languages

• Two mathematical query languages form the
basis for user-facing languages (e.g., SQL):
• Relational Algebra: Operational, useful for

representing how queries are evaluated.
• Relational Calculus: Declarative, useful for

representing what a user wants rather than
how to compute it.

13

Formal Query Languages

• Two mathematical query languages form the
basis for user-facing languages (e.g., SQL):
• Relational Algebra: Operational, useful for

representing how queries are evaluated.
• Relational Calculus: Declarative, useful for

representing what a user wants rather than
how to compute it.

13

For
Now

Preliminaries

14

Q(Officers, Ships, …)

Queries are applied to Relations

A Query works on fixed relation schemas.
… but runs on any relation instance

Preliminaries

15

Q2(Officers, Q1(Ships))

Important: The result of a query is also a relation!

Allows simple, composable query operators

Example Instances

16

 FirstName, LastName, Rank, Ship
[James, Kirk, 4.0, 1701A]
[Jean Luc, Picard, 4.0, 1701D]
[Benjamin, Sisko, 3.0, DS9]
[Kathryn, Janeway, 4.0, 74656]
[Nerys, Kira, 2.5, 75633]

Captains

 FirstName, LastName, Rank, Ship
[Spock, NULL, 2.5, 1701A]
[William, Riker, 2.5, 1701D]
[Nerys, Kira, 2.5, DS9]
[Chakotay, NULL, 3.0, 74656]

FirstOfficers

 Ship, Location
[1701A, Earth]
[1701D, Risa]
[75633, Bajor]
[DS9, Bajor]

Locations

Relational Algebra

17

Operation Sym Meaning

Selection 𝝈 Select a subset of the input rows

Projection π Delete unwanted columns

Cross-product x Combine two relations

Set-difference - Tuples in Rel 1, but not Rel 2

Union U Tuples either in Rel 1 or in Rel 2

Also: Intersection, Join, Division, Renaming
(Not essential, but can be useful)

Relational Algebra

18

Each operation returns a relation!

(Relational Algebra operators are closed)

Operations can be composed

Relational Algebra

Relational
Algebra

Data

Data

Relational Algebra

Relational
Algebra

Data

Data
A Set of Tuples

A Set of Tuples

[Set] Relational
Algebra

Relational Algebra

Relational
Algebra

Data

Data
A Set of Tuples

A Set of Tuples

[Set] Relational
Algebra

A Bag of Tuples

A Bag of Tuples

Bag Relational
Algebra

Relational Algebra

Relational
Algebra

Data

Data
A Set of Tuples

A Set of Tuples

[Set] Relational
Algebra

A Bag of Tuples

A Bag of Tuples

Bag Relational
Algebra

A List of Tuples

A List of Tuples

Extended
Relational
Algebra

Relational Algebra

Relational
Algebra

Data

Data
A Set of Tuples

A Set of Tuples

[Set] Relational
Algebra

A Bag of Tuples

A Bag of Tuples

Bag Relational
Algebra

A List of Tuples

A List of Tuples

Extended
Relational
Algebra

Today

Projection (π)

20

Delete attributes not in the projection list.
πlastname, ship(Captains) FirstName, LastName, Rank, Ship

[Spock, NULL, 2.5, 1701A]
[William, Riker, 2.5, 1701D]
[Nerys, Kira, 2.5, DS9]
[Chakotay, NULL, 3.0, 74656]

Projection (π)

20

Delete attributes not in the projection list.
πlastname, ship(Captains)
 LastName, Ship
[Kirk, 1701A]
[Picard, 1701D]
[Sisko, DS9]
[Janeway, 74656]
[Kira, 75633]

πrank(FirstOfficers)

 FirstName, LastName, Rank, Ship
[Spock, NULL, 2.5, 1701A]
[William, Riker, 2.5, 1701D]
[Nerys, Kira, 2.5, DS9]
[Chakotay, NULL, 3.0, 74656]

Projection (π)

20

Delete attributes not in the projection list.
πlastname, ship(Captains)
 LastName, Ship
[Kirk, 1701A]
[Picard, 1701D]
[Sisko, DS9]
[Janeway, 74656]
[Kira, 75633]

πrank(FirstOfficers)
 Rank
[2.5]
[3.0]

 FirstName, LastName, Rank, Ship
[Spock, NULL, 2.5, 1701A]
[William, Riker, 2.5, 1701D]
[Nerys, Kira, 2.5, DS9]
[Chakotay, NULL, 3.0, 74656]

Why is this strange?

Projection (π)

20

Delete attributes not in the projection list.
πlastname, ship(Captains)
 LastName, Ship
[Kirk, 1701A]
[Picard, 1701D]
[Sisko, DS9]
[Janeway, 74656]
[Kira, 75633]

πrank(FirstOfficers)
 Rank
[2.5]
[3.0]

 FirstName, LastName, Rank, Ship
[Spock, NULL, 2.5, 1701A]
[William, Riker, 2.5, 1701D]
[Nerys, Kira, 2.5, DS9]
[Chakotay, NULL, 3.0, 74656]

Why is this strange?

Relational Algebra on Bags:
Bag Relational Algebra

Why?

Projection (π)

21

πlastname, ship(Captains)

Queries are relations

What is this (query) relation’s schema?

Selection ()

22

Selects rows that satisfy the selection condition.

 FirstName, LastName, Rank, Ship
[Benjamin, Sisko, 3.0, DS9]
[Nerys, Kira, 2.5, 75633]

𝝈rank < 3.5(Captains)

 LastName
[Kirk]
[Picard]
[Janeway]

When does selection need
to eliminate duplicates?

What is the schema of
these queries?

𝝈

𝝈rank > 3.5(Captains))πlastname(

Union, Intersection,
Set Difference

23

Each takes two relations that are union-compatible

Union: Return all tuples in either relation

 FirstName, Lastname
[James, Kirk]
[Jean Luc, Picard]
[Benjamin, Sisko]
[Kathryn, Janeway]
[Spock, NULL]
[William, Riker]
[Nerys, Kira]
[Chakotay, NULL]

(Both relations have the same number of fields with the same types)

πfirstname,lastname (Captains) U πfirstname,lastname (FirstOfficers)

Union, Intersection,
Set Difference

24

Intersection: Return all tuples in both relations
πfirstname,lastname (Captains) ∩ πfirstname,lastname (FirstOfficers)

 FirstName, Lastname
[Nerys, Kira]

Each takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Union, Intersection,
Set Difference

25

Set Difference: Return all tuples in the first
 but not the second relation

πfirstname,lastname (Captains) - πfirstname,lastname (FirstOfficers)

 FirstName, LastName
[James, Kirk]
[Jean Luc, Picard]
[Benjamin, Sisko]
[Kathryn, Janeway]

Each takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Union, Intersection,
Set Difference

26

What is the schema of the result
of any of these operators?

Each takes two relations that are union-compatible
(Both relations have the same number of fields with the same types)

Cross Product

27

All pairs of tuples from both relations.

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[Spock, NULL, 2.5, 1701A, 1701D, Risa]
[Spock, NULL, 2.5, 1701A, DS9, Bajor]
[Spock, NULL, 2.5, 1701A, 75633, Bajor]
[William, Riker, 2.5, 1701D, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[William, Riker, 2.5, 1701D, DS9, Bajor]
[William, Riker, 2.5, 1701D, 75633, Bajor]
[Nerys, Kira, 2.5, DS9, 1701A, Earth]
[Nerys, Kira, 2.5, DS9, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]
[Nerys, Kira, 2.5, DS9, 75633, Bajor]
[Chakotay, NULL, 3.0, 74656, 1701A, Earth]
[Chakotay, NULL, 3.0, 74656, 1701D, Risa]
[Chakotay, NULL, 3.0, 74656, DS9, Bajor]
[Chakotay, NULL, 3.0, 74656, 75633, Bajor]

FirstOfficers x Locations

Cross Product

28

FirstOfficers x Locations

What is the schema of this operator’s result?

All pairs of tuples from both relations.

Cross Product

28

 FirstName, LastName, Rank, (Ship), (Ship), Location
 ...

FirstOfficers x Locations

Naming conflict: Both relations have a ‘Ship’ field

What is the schema of this operator’s result?

All pairs of tuples from both relations.

Renaming

29

 First, Last, Rank, OShip, LShip, Location
 ...
 ...

ρFirst, Last, Rank, OShip, LShip, Location(FirstOfficers x Locations)

Cross Product

30

Can combine with selection

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]

[William, Riker, 2.5, 1701D, 1701D, Risa]

[Nerys, Kira, 2.5, DS9, DS9, Bajor]

[Chakotay, NULL, 3.0, 74656, 75633, Bajor]

[Spock, NULL, 2.5, 1701A, 1701D, Risa]
[Spock, NULL, 2.5, 1701A, DS9, Bajor]
[Spock, NULL, 2.5, 1701A, 75633, Bajor]
[William, Riker, 2.5, 1701D, 1701A, Earth]

[William, Riker, 2.5, 1701D, DS9, Bajor]
[William, Riker, 2.5, 1701D, 75633, Bajor]
[Nerys, Kira, 2.5, DS9, 1701A, Earth]
[Nerys, Kira, 2.5, DS9, 1701D, Risa]

[Nerys, Kira, 2.5, DS9, 75633, Bajor]
[Chakotay, NULL, 3.0, 74656, 1701A, Earth]
[Chakotay, NULL, 3.0, 74656, 1701D, Risa]
[Chakotay, NULL, 3.0, 74656, DS9, Bajor]

(FirstOfficers x Locations)

Cross Product

30

Can combine with selection

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]

[William, Riker, 2.5, 1701D, 1701D, Risa]

[Nerys, Kira, 2.5, DS9, DS9, Bajor]

[Chakotay, NULL, 3.0, 74656, 75633, Bajor]

𝝈[4] = [5](FirstOfficers x Locations)

Join

31

Pair tuples according to a join condition.

 FirstName, Rank, FirstName, Rank
[Spock, 2.5, James, 4.0]
[Spock, 2.5, Jean Luc, 4.0]
[Spock, 2.5, Benjamin, 3.0]
[Spock, 2.5, Kathryn, 4.0]
[William, 2.5, James, 4.0]
[William, 2.5, Jean Luc, 4.0]
[William, 2.5, Benjamin, 3.0]
[William, 2.5, Kathryn, 4.0]
[Nerys, 2.5, James, 4.0]
[Nerys, 2.5, Jean Luc, 4.0]
[Nerys, 2.5, Benjamin, 3.0]
[Nerys, 2.5, Kathryn, 4.0]
[Chakotay, 3.0, James, 4.0]
[Chakotay, 3.0, Jean Luc, 4.0]
[Chakotay, 3.0, Kathryn, 4.0]

πFirstName,Rank(FO) ⋈FO.Rank < C.Rank πFirstName,Rank(C)

Result schema is like
the cross product

There are fewer tuples in the
result than cross-products:
we can often compute joins

more efficiently
(these are sometimes called ‘theta-joins’)

Equi-Joins

32

A special case of joins where the condition contains only equalities.

FO ⋈FO.Ship = Loc.Ship Loc

Result schema is like the cross product, but
only one copy of each field with an equality

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

Equi-Joins

32

A special case of joins where the condition contains only equalities.

Result schema is like the cross product, but
only one copy of each field with an equality

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

FO ⋈Ship Loc

Equi-Joins

32

A special case of joins where the condition contains only equalities.

Result schema is like the cross product, but
only one copy of each field with an equality

 FirstName, LastName, Rank, (Ship), (Ship), Location
[Spock, NULL, 2.5, 1701A, 1701A, Earth]
[William, Riker, 2.5, 1701D, 1701D, Risa]
[Nerys, Kira, 2.5, DS9, DS9, Bajor]

Natural Joins: Equi-Joins on all fields with the same name
FirstOfficers ⋈Ship Locations = FirstOfficers ⋈ Locations

FO ⋈Ship Loc

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

Yes

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

Yes

No

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

Yes

No

No

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

Yes

No

No

Yes

(Which operators behave differently in Set- and Bag-RA?)

Which operators can create duplicates?

Selection 𝝈

Projection π

Cross-product x

Set-difference -

Union U

Join ⋈

No

Yes

No

No

Yes

No

(Which operators behave differently in Set- and Bag-RA?)

34

Group Work

 FirstName, LastName, Rank, Ship
[James, Kirk, 4.0, 1701A]
[Jean Luc, Picard, 4.0, 1701D]
[Benjamin, Sisko, 3.0, DS9]
[Kathryn, Janeway, 4.0, 74656]
[Nerys, Kira, 2.5, 75633]

 Ship, Location
[1701A, Earth]
[1701D, Risa]
[75633, Bajor]
[DS9, Bajor]

LocationsCaptains

Find the Last Names of all Captains of a Ship
located on ‘Bajor’

Come up with at least 2 distinct queries that compute this.
Which are the most efficient and why?

35

Find the Last Names of all Captains of
a Ship located on ‘Bajor’

Solution 1:
πLastName(Location= ‘Bajor’(Locations) ⋈ Captains)

Solution 2:
Temp1 = Location= ‘Bajor’ (Locations))

Temp2 = Temp1 ⋈ (π(LastName,Ship) Captains)

πLastName(Temp2)
Solution 3:

πLastName(Location= ‘Bajor’(Captains ⋈ Locations))𝝈

𝝈

𝝈

35

Find the Last Names of all Captains of
a Ship located on ‘Bajor’

Solution 1:
πLastName(Location= ‘Bajor’(Locations) ⋈ Captains)

Solution 2:
Temp1 = Location= ‘Bajor’ (Locations))

Temp2 = Temp1 ⋈ (π(LastName,Ship) Captains)

πLastName(Temp2)
Solution 3:

πLastName(Location= ‘Bajor’(Captains ⋈ Locations))

These are all equivalent queries!

𝝈

𝝈

𝝈

Division

36

Not typically supported as a primitive operator,
but useful for expressing queries like:

Find officers who have visited all planets

Relation V has fields Name, Planet
Relation P has field Planet

V / P = { Name | For each Planet in P, <Name, Planet> is in V }

All Names in the Visited table who have visited
every Planet in the Planets table

Division

37

 Name, Planet
[Kirk, Earth]
[Kirk, Vulcan]
[Kirk, Kronos]
[Spock, Earth]
[Spock, Vulcan]
[Spock, Romulus]
[McCoy, Earth]
[McCoy, Vulcan]
[Scotty, Earth]

V

 Planet
[Earth]

P1

 Name
[Kirk]
[Spock]
[McCoy]
[Scotty]

V/P1

 Planet
[Earth]
[Vulcan]

P2

 Name
[Kirk]
[Spock]
[McCoy]

V/P2

 Planet
[Earth]
[Vulcan]
[Romulus]

P3

 Name
[Spock]

V/P2

Division

38

• Not an essential operation, but a useful
shorthand.

• Also true of joins, but joins are so common
that most systems implement them
specifically

• How do we implement division using other
operators?

• Try it! (Group Work)

39

Find the Last Names of all captains of a
ship located in Federation Territories

 Location, Affiliation
[Earth, Federation]
[Risa, Federation]
[Bajor, Bajor]

Affiliation

πLastName(Affiliation= ‘Federation’(Loc) ⋈ Affil ⋈ Cap)𝝈

𝝈

39

Find the Last Names of all captains of a
ship located in Federation Territories

 Location, Affiliation
[Earth, Federation]
[Risa, Federation]
[Bajor, Bajor]

Affiliation

πLastName(Affiliation= ‘Federation’(Loc) ⋈ Affil ⋈ Cap)

πLastName(πShip(πLocation(Affiliation= ‘Federation’(Loc))) ⋈ Affil) ⋈ Cap)

But we can do this more efficiently:

A query optimizer can find this, given the first solution

𝝈

𝝈

Relational Algebra
• A simple way to think about and work with

set-at-a-time computations.

• … simple → easy to evaluate

• … simple → easy to optimize

• Next time…

• SQL

