SQL

Database Systems: The Complete Book
Ch 2.3, 6.1-6.4

Project Outline

Parser & ;
SQL Query q Relational Algebra

«t -Sq = JSqlParser

h Hope and Duct Tape?

SQL is Human Readable

e [ots of Syntactic Sugar

 WHERE vs HAVING
* Lots of Corner Cases

« SELECT A, Bvs SELECT A, SUM(B)
* Non-obvious evaluation strategy

e SELECT ... FROMR, 5, T, ... WHERE ...

SQL is hard to evaluate directly!
3

Relational Algebra

Equivalent to SQL (to be discussed)
SIMPLE! (only a handful of operators)
“‘Non-declarative” (easy to rewrite)

Minimal corner cases or syntactic sugar

“RA” is easier to interpret!

4

Relational Algebra

Basic Relational Operators

o Select (0), Project (m), Cross/Join (X/X),
Union (U), Relation (R, S, T, ...),

-xtended Relational Operators (more next week)
* Aggregates (suM, COUNT,MIN/MAX, AVERAGE)

e List Operators: Sort, Limit

5

I'ne Evaluation Pipeline

4 .sql How does this work?
(later today)

Rend: 2
-~ raboy_date Morth Yew orth Cumert

2080319 3 2008 208

e rece ey 2088807 4 S8 9w s am

o ’Aw LA 208031 2008 2008

— 2080031 08 W 8 2

o 0080807 2008 2008

20803 008 2008

AL n o a0

1 2008 008

L1 208

08

e (o i lvmal () el (el (] () pwlmmles=i=~ | 0000 ¥F NN DR W OV | xmew 2 8 oww w8 xm
Sl GMGNITE, CRPINITG_ STy + DO N GVEIoyee B aepanTent
won £ dectice) sectie and saiary ¢ bomus » o m SectNiare e DB

Parsed Query

\

What does this look like? ~—— How does this work?
(today) Data (next class)

SQL

Developed by IBM (for System R) in the 1970s.

Standard used by many vendors.

SQ
SQ
SQ
SQ
SQ
SQ
SQ

| -86 (original standard)

| -89 (minor revisions; integrity constraints)

| -92 (major revision; basis for modern SQL)
| -99 (XML, window queries, generated default values)
| 2003 (major revisions to XML support)

| 2008 (minor extensions)

| 2011 (minor extensions; temporal databases)

A Basic SQL Query

(optional) keyword indicating that the answer should not contain duplicates

\/
SELECT [DISTINCT] target-list

/

A list of attributes of relations in relation-list

FROM relation-1list

A list of relation names /
(possibly with a range-variable after each name)

WHERE condition
1

Comparisons (‘=’,'<>’,'<,">’ ‘<=" “>=") and other boolean predicates,
combined using AND, OR,and NOT
(2 boolean fogmula)

A Basic SQL Query

net.sf.jsglparser.statement.select.PlainSelect

SELECT [DISTINCT] target-list

/ \
mySelect.getDistinct () mySelect.getSelectItems ()
FROM relation-list

mySelect.getFromItem() and mySelect.getJoins ()

WHERE conditi?n

mySelect.getWhere ()

Query Evaluation

SELECT [DISTINCT] target-list
FROM relation-list
WHERE condition

1) Compute the 2" combinations of tuples in all
relations appearing in relation-list

2) Discard tuples that ftail the condition
3) Delete attributes not in target-list

4) It DISTINCT Is specified, eliminate duplicate rows

This is the least efficient strategy to compute a query!
A good optimizer will find more efficient strategies to compute the same answer.

|10

DISTINCT

Why do you explicit

V INC

want duplicate el

icate that you

mina

on in SQL?

Example-Wildcards

Find all officers on the

— . . ‘*j]
—nterprise (Ship 1701A) denotes all attributes
(0 *!
SELECT * < Offllcers.. dejotes all
FROM Officers att”bUteS 1N Off cers
WHERE Ship = ‘1701A"

k £ FirstName, LastName, Ship
FirstName, LastName, Ship James, Kirk, 1701A°
[James, Kirk, 1701A] i)
[Leonard, McCoy, 1701A] ' Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A] Spock, SonOfSarek, 1701A]

net.sf.jsglparser.statement.select.AllColumns
net.sf.jsglparser.statement.select.AllTableColumns

12

Example-Condition

Find all officers on the

—nterprise (Ship 1701A)

SELECT *
FROM Officers

WHERE Ship = ‘1701A’

Voo

l

FirstName, LastName, Ship

[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]

FirstName, LastName, Ship

James, Kirk, 1701A]
Leonard, McCoy, 1701A]
 Spock, SonOfSarek, 1701A]
Montgomery, Scott, 1701A]
‘Hikaru, Sulu, 2000]
Pavel, Chekov, 1701A]
Nyota, Uhura, 1701A]
‘Christine, Chapel, 0001

Example-larget List

-ind just names of all
officers on the —nterprise FirstName, LastName, Ship

SELECT O.FirstName,O.LastName James, Kirk, 1701A]
FROM Officers O ' Leonard, McCoy, 1701A]
WHERE O.Ship = ‘1701A°’ [Spock, sonOfSarek, 1701A]
Montgomery, Scott, 1701A]
l l l Hikaru, Sulu, 2000]
FirstName, LastName Pavel, Chekov, 1701A°
[James, Kirk] ‘Nyota, Uhura, 1701A]
{g:ggifd’ I\S/Igriglf/Sareki ‘Christine, Chapel, 0001
[Montgomery, Scott]
[Pavel, Chekov]

[Nyota, Uhura]

Example-Multiple Relations

In English, what does this
query compute”
SELECT FirstName,LastName
FROM Officers, Ships

WHERE Ship = ID
AND Location = ‘Vulcan’

oo

FirstName, LastName
[Hikaru, Sulu]

Who Is on a ship
located at Vulcan?

FirstName, LastName, Ship

[James, Kirk, 1701A]
[Leonard, McCoy, 1701A]
[Spock, SonOfSarek, 1701A]
[Montgomery, Scott, 1701A]
[Hikaru, Sulu, 2000]
[Pavel, Chekov, 1701A]
[Nyota, Uhura, 1701A]
[Christine, Chapel, 0001]
ID, Name, Location

[1701A, Enterprise-A, Andoria]
[2000, Excelsior, Vulcan]
[1864, Reliant, Ceti Alpha VI]

Example-Multiple Relations

SELECT FirstName,LastName FROM Officers, Ships
WHERE Ship = ID AND Location = ‘Vulcan’

mySelect.getFromItem() returns
... schema.Table(Officers)

mySelect.getJoins () returns
List (
..select.Join(Table(Ships), {simple})
)

Range Variables

SELECT FirstName,LastName But it’s good style tO yse

FROM Officers, Ships :

WHERE Ship = ID range vanablles and fully-
AND Location = ‘Vulcan’ quallfled attribute names!

IS the same as

SELECT Officers.FirstName,Officers.LastName
FROM Officers, Ships
WHERE Officers.Ship = Ships.ID

AND Ships.Location = ‘Vulcan’

IS the same as

SELECT O.FirstName,O.LastName
JSq|Parser calls FROM Officers O, Ships S

. (. y) O.Shi = S.ID
this an “alias WHERE B

AND S.Location = ‘Vulcan’

|7

EXPressions

ECT 0O.age,
agel = 0O.age*0.2,
O.age*3.0 AS ageZ
FROM Officers O

2
=
-

[age, agel, agel]

Arithmetic expressions can appear in targets or conditions.
Use ‘=" or ‘AS’ to assign names to these attributes.
(The behavior of unnamed attributes is unspecitied)

Strings

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE S.LastName LIKE ‘Ch%e%’

l

[Pavel, Chekov]
[Christine, Chapel]

SQL uses single quotes for ‘string literals’

Strings

SELECT O.FirstName, O.LastName
FROM Officers O
WHER. O.LastName LIKE ‘Ch%e%’

l

[Pavel, Chekov]
[Christine, Chapel]

L]

LIKE is used for String Matches

"matches O or more characters
(like RegEx /.*/)

20

o

Strings

SELECT O.FirstName, O.LastName
FROM Officers O
WHER. O.LastName LIKE ‘Ch %e%’

l

[Christine, Chapel]

L]

LIKE is used for String Matches

"matches O or more characters
(like RegEx /.*/)

21

o

UNION

Computes the union of any two union-compatible sets of tuples

SELECT O.FirstName
FROM Officers O
WHERE O.LastName = ‘Kirk’
OR O.LastName = ‘Picard’
is the same as

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Kirk’

UNION

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Picard’

22

UNION

net.sf.jsglparser.statement.select.Union

SELECT O.FirstName FROM Officers O

WHERE O.LastName = ‘Kirk'’

UNION

SELECT O.FirstName FROM Officers O
WHERE O.LastName = ‘Picard’

myUnion.getPlainSelects ()

23

Nested Queries

What does this query compute?

SELECT O.FirstName, O.LastName

FROM Officers O

WHERE O.ID IN (SELECT V.Officer
FROM Visited\V

WHERE V.Planet\= ‘Vulcan'’)
Use NOT IN for
all officers who IN nested query must
have never have exactly one attribute

visited ‘Vulcan’

net.sf.jsglparser.expression.operators.relational.InExpression
net.sf.jsglparser.statement.select.SubSelect

24

Nested Queries

(With Correlation)

SELECT O.FirstName, O.LastName
FROM Officers O
WHERE EXISTS (SELECT
FROM Viseited V
WHERE V.Rlanet = ‘Vulcan’
AND O0.ID = V.Officer)

EXISTS is true if the nested query returns at least one result

The nested query can refer to attributes from the outer query

net.sf.jsglparser.expression.operators.relational .ExistsExpression

25

More Set Operators

IN > NOT IN

EXISTS >»NOT EXISTS

More Set Operators

[op] ANY [op] ALL

SELECT * FROM Officers O
WHERE O.Rank > ALL (SELECT O2.rank
FROM Officers 02,

Ships S
WHERE 02.Ship = S.ID
AND S.Name = ‘Enterprise’

)

What does this compute”
Which officers outrank every officer on the Enterprise?

net.sf.jsglparser.expression.AllComparisonExpression
27

—rom-Nesting

SELECT *

FROM Officers O,
(SELECT V.Officer
FROM Visited V
WHERE V.Planet = ‘Andoria’

WHERE o“iD = A.Officer

Queries are relations!

net.sf.jsglparser.statement.select.SubSelect

28

Aggregate Operators

SELECT COUNT (*)
FROM Officers O, Ships S
WHERE O.Ship = S.ID

AND S.Name = ‘Enterprise’

What does this compute?
How many officers are on the Enterprise”

net.sf.jsglparser.expression.Function

29

Aggregate Operators

COUNT (*)
COUNT (DISTINCT A[, B[, ..11)
SUM([DISTINCT] A)

AVG

(
(
AX(A&\\\\
MIN(A) Single Column/Expression

30

[DISTINCT] A)

Group Exercise

SELECT * FROM Officers O
WHERE O.Rank > ALL (SELECT O2.rank
FROM Officers 02,

Ships S
WHERE 02.Ship = S.ID
AND S.Name = ‘Enterprise’

)

How could you write this query without ALL?

31

Aggregate Operators

This query Is illegal!

_Why?

SELECTfS.Name; AVG(O.Age)
FROM Officers O, Ships S
WHERE O.Ship = S.ID

GROUP BY S.Name

GrOapihgambtweusdo regaie ayarddated o fegaiestardedes.

32

Group-By Queries

SELECT [DISTINCT] target-list
FROM relation-list

WHERE condition

GROUP BY grouping-1list

HAVING group-condition

The target-list now contains
(a) grouped attributes
(b) aggregate expressions

Targets of type (a) must be a subset of the grouping-list

(intuitively each answer tuple corresponds to a single group,
and each group must have a single value for each attribute)

33

Group-By Queries

SELECT [DISTINCT] target-list
FROM relation-list

WHERE condition

GROUP BY grouping-1list

HAVING group-condition

The condition is applied before grouping
The having-condition is applied after grouping

34

Group-By Queries

SELECT [DISTINCT] target-list
FROM relation-list

WHERE condition

GROUP BY grouping-1list

HAVING group-condition
‘\\\~mySelect.getHaving()

mySelect.getGroupByColumnReferences ()

35

Order By/Limit

How can we compute the Top 5 officers by rank?

SELECT O.Name, O.Rank
FROM Officers O
ORDER BY O.Rank

LIMIT 5 N
I mySelect.getOrderByElements ()

mySelect.getLimit ()

36

Defining Relations in SQL

CREATE TABLE Officers
(FirstName CHAR(20), -

LastName CHAR(20),
Ship CHAR(5),
ID INTEGER

)

CREATE TABLE Ships

(ID CHAR(5),
Name CHAR(20),
Location CHAR(40)

)

37

ne schema defines

not only the column

ames, but also their
types (domains)

—or example a 20-
character string

Moditying Relations

Destroy the relation ‘Officers’
All schema information AND tuples are deleted

DROP TABLE Officers

Add a new column (field) to the Ships relation
Every tuple in the current instance is extended with a
‘null’ value in the new field

ALTER TABLE Ships
ADD COLUMN Commissioned DATE

38

Adding and Deleting Tuples

Insert single tuples using:

INSERT INTO Officers (FirstName, LastName, Ship)
VALUES (‘Benjamin’, ‘Sisko’, ‘74205')

Can delete all tuples satistying some condition (e.g., Ship = 2000)

DELETE FROM Officers O
WHERE O.Ship = ‘2000°

More powerful data manipulation commands are available in SQL
(We’'ll discuss them later in the course)

39

SQL

 SQL is a language for querying relations

* S

L]

LECT to access (query) data

* Ditferent features for different access patterns.

* INSERT INTO, DEL]

L]

TE FROM to modity data

 CREATE TABLE, DROP TABLE,
ALTER TABLE to modity relations

e Nexttime...
* TJranslating SQL to Relational Algebra (equivalence)

40

