
Indexes
Database Systems: The Complete Book

Ch. 13.1-13.3, 14.1-14.2

1

2

3

4

$88 $24

5

$88 $24

Hardcover (heavy) Paperback (light)

6

$88 $24

Hardcover (heavy) Paperback (light)

Bigger Small

7

$88 $24

Hardcover (heavy) Paperback (light)

Bigger Small

Good ToC/Index Bad ToC/Index

The Memory Hierarchy
Fast (but small)

Big (but slow)
8

Data Organization

Heap

Clustered/
Sorted Indexed

Records stored
in any order

Records grouped
together or stored

in sorted order,

Secondary file
used to organize

data records

What are the benefits/drawbacks of each method?

When do we use each method?

Does it matter what medium the data is being stored on?

9

IO Operations are Bad

10

Recap / GroupWork
SELECT o.FirstName, o.LastName
FROM Officers o
WHERE o.Rank >= 3
 AND (o.Ship = 1701
 OR o.Ship = 2000)

What is an equivalent Relational Algebra expression?

What is the maximum working set size?
What is the time complexity?

11

Query Evaluation
• A query plan identifies the evaluation path.

• Individual operators express primitive operations.

• Select, project, join, sort, etc…

• Individual operators can be evaluated in isolation.

• e.g., Select: Drop rows that fail the predicate

• … but sometimes combinations of operators are better.

• e.g., Select+Cross Product vs Join

12

Let’s Consider Select…
SELECT o.FirstName, o.LastName
FROM Officers o
WHERE o.Rank >= 3
 AND (o.Ship = 1701
 OR o.Ship = 2000)

How would you evaluate this query?

How would you organize the data for this query?

13

14

Problem

Select searches for data
Checking every data value is correct, but not efficient

Solution
Organize the data!

What are some ways of organizing the data?

Organizing the Data
• Solution 1: Sort

• Store the data sorted

• Solution 2: Partition (e.g., Hash)

• Deterministically create ‘buckets’ of data.

• Solution 3: Organize References

• Store/organize ‘pointers’ to the data.
What are some pros and cons for each solution?

15

Indexing (high level)

1, 5

10,5

3,9

1,8

5,1

6,1

16

A, B

Indexing (high level)

1, 5

10,5

3,9

1,8

5,1

6,1

Data Sorted on A
(clustered index)

Pointers Sorted on B
(unclustered index)

5

9

8

1

1

5

Want Efficient Lookups on Both A and B!
17

Back to Select

σA = 1

σ
A < 1

σA = 1 AND B = 2

How would you sort your data for…
(and how would you evaluate it)

18

Data Organization
• Each clause in a CNF boolean formula must be true.

• API: Give me all records (or record IDs) that satisfy this
predicate (these predicates)

• Equality search: All records with field X = ‘Y’

• Officer.Ship = ‘1701A’

• Range search: All records with field X ∈ [Y, Z]

• Officer.Rank ∈ [3, +∞)

19

Problem…

20

Let’s say you have 220 blocks (~4GB) of data sorted on A

How many IOs are required to find one A?

In general, for N blocks, how many IOs?

log2(N)

Why?

“Searching”

21

0 1 2 3 4 5 6 7 8 9 10

All Things

Things < 5 Things > 5

Things < 2 2 < Things < 5

“Find 3”
As you search, you are effectively building a binary tree.

Shorter Trees

22

Binary Tree → Log 2 Depth

N-ary Tree → Log N Depth

Tree-Based Indexes

23

The ISAM Datastructure

24

… … … …

… …

…

N
on

-L
ea

f P
ag

es
Le

af
 P

ag
es

p0 p1 p2 p3 p4k1 k2 k3 k4 … Non-Leaf Page

Leaf Pages contain <K, RID> or <K, Record> pairs

Constructing an ISAM Index

25

1) Allocate (sequential) leaf pages
2) Ensure that the data on the leaf pages is sorted

3) Build the non-leaf pages (in arbitrary order)

… … … …

… …

…

ISAM Index Searches

26

Equality: Start at root, use key comparisons to find leaf

Range: Use key comparisons to find start and end page
Scan all pages in between start/end leaves.

… … … …

… …

…

Constructing an ISAM Index

27

… … … …

… …

…

Do you see any problems with this?

Updating an ISAM Index

28

… … … …

… …

…

1) When creating the index leave free space in each leaf page
2) The index stays the same, new data is added to the free space
3) If a leaf page overflows, we create an overflow page (or more)

An Example ISAM

29

10,15

3320

40

6351

20,27 33,37 40,46

23

,

484142

51,55 63,97

B+ Trees

30

In
de

x
En

tr
ie

s
D

at
a

En
tr

ie
s

Data pages not sequential - Need linked list for traversals

B+ Trees

31

2, 3,5, 7

1713 3024

14,16,_,_ 19,20,22,_ 24,27,29,_ 33,34,38,39

Search proceeds as in ISAM via key comparisons

Find 5. Find 15. Find [24,∞)

B+ Tree Invariants

32

• Keep space open for insertions in inner/data nodes.

• ‘Split’ nodes when they’re full

• Avoid under-using space

• ‘Merge’ nodes when they’re under-filled

• Maintain Invariant: All Nodes ≥ 50% Full

• (Exception: The Root)

Example

33

Inner Nodes: 4 values, 5 pointers

Data Nodes: 4 values

1713 3024

Inserting into B+ Trees

34

2, 3,5, 7 14,16 19,20,22 24,27,29 33,34,38,39

Insert 8

1713 3024

Inserting into B+ Trees

35

2, 3,5, 72, 3 5,7,8, 5

Copy <5> into parent index
Insert 8

1713 3024

Inserting into B+ Trees

36

Copy <5> into parent index

5

Move <17> into parent index : Root Split!

17

13 3024

Inserting into B+ Trees

37

Copy <5> into parent index

5

Move <17> into parent index : Root Split!

Inserting into B+ Trees

38

5, 7,8 14,16 19,20,22 24,27,29 33,34,38,39

13 30245

17

2, 3

Why do we move, rather than copy the 17?
Are we guaranteed to satisfy our occupancy guarantee?

Deleting from B+ Trees

39

5, 7,8 14,16 19,20,22 24,27,29 33,34,38,39

13 30245

17

2, 3

Delete 19 Delete 20

20,222222,24 27,29

27

27

Deleting from B+ Trees

40

5, 7,8 14,16 33,34,38,39

13 305

17

2, 3

Delete 24

22,24 27,292222,27,29

Non-Leaf Redistribution

41

5, 7,8 14,16 22,27,29

20135 17

22

2, 3 17,18 20,21

30

33,34,38

Non-Leaf Redistribution

42

5, 7,8 14,16 22,27,29

20135

17

22

2, 3 17,18 20,21

30

33,34,38

Intuitively, we rotate index entries 17-22 through the root

