
Indexes
Database Systems: The Complete Book 

Ch. 13.1-13.3, 14.1-14.2
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The Memory Hierarchy
Fast (but small)

Big (but slow)
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Data Organization

Heap

Clustered/ 
Sorted Indexed

Records stored
in any order

Records grouped 
together or stored

in sorted order, 

Secondary file
used to organize

data records

What are the benefits/drawbacks of each method?

When do we use each method?

Does it matter what medium the data is being stored on?
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IO Operations are Bad
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Recap / GroupWork
SELECT o.FirstName, o.LastName
FROM Officers o
WHERE o.Rank >= 3 
  AND ( o.Ship = 1701 
        OR o.Ship = 2000 )

What is an equivalent Relational Algebra expression?

What is the maximum working set size? 
What is the time complexity?

11



Query Evaluation
• A query plan identifies the evaluation path. 

• Individual operators express primitive operations. 

• Select, project, join, sort, etc… 

• Individual operators can be evaluated in isolation. 

• e.g., Select: Drop rows that fail the predicate 

• … but sometimes combinations of operators are better. 

• e.g., Select+Cross Product vs Join
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Let’s Consider Select…
SELECT o.FirstName, o.LastName
FROM Officers o
WHERE o.Rank >= 3 
  AND ( o.Ship = 1701 
        OR o.Ship = 2000 )

How would you evaluate this query?

How would you organize the data for this query?
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Problem

Select searches for data 
Checking every data value is correct, but not efficient

Solution
Organize the data!

What are some ways of organizing the data?



Organizing the Data
• Solution 1: Sort 

• Store the data sorted 

• Solution 2: Partition (e.g., Hash) 

• Deterministically create ‘buckets’ of data. 

• Solution 3: Organize References 

• Store/organize ‘pointers’ to the data.
What are some pros and cons for each solution?
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Indexing (high level)
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Indexing (high level)

1, 5

10,5

3,9

1,8

5,1

6,1

Data Sorted on A
(clustered index)

Pointers Sorted on B
(unclustered index)

5

9
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1
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5

Want Efficient Lookups on Both A and B!
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Back to Select

σA = 1

σ
A < 1

σA = 1 AND B = 2

How would you sort your data for…  
(and how would you evaluate it)
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Data Organization
• Each clause in a CNF boolean formula must be true. 

• API: Give me all records (or record IDs) that satisfy this 
predicate (these predicates) 

• Equality search: All records with field X = ‘Y’ 

• Officer.Ship = ‘1701A’

• Range search: All records with field X ∈ [Y, Z] 

• Officer.Rank ∈ [3, +∞)
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Problem…
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Let’s say you have 220 blocks (~4GB) of data sorted on A

How many IOs are required to find one A?

In general, for N blocks, how many IOs?

log2(N)

Why?



“Searching”
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0 1 2 3 4 5 6 7 8 9 10

All Things

Things < 5 Things > 5

Things < 2 2 < Things < 5

“Find 3”
As you search, you are effectively building a binary tree.



Shorter Trees
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Binary Tree → Log 2 Depth

N-ary Tree → Log N Depth



Tree-Based Indexes
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The ISAM Datastructure
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p0 p1 p2 p3 p4k1 k2 k3 k4 … Non-Leaf Page

Leaf Pages contain <K, RID> or <K, Record> pairs



Constructing an ISAM Index
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1) Allocate (sequential) leaf pages
2) Ensure that the data on the leaf pages is sorted

3) Build the non-leaf pages (in arbitrary order)

… … … …

… …

…



ISAM Index Searches
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Equality: Start at root, use key comparisons to find leaf

Range: Use key comparisons to find start and end page 
Scan all pages in between start/end leaves.

… … … …

… …

…



Constructing an ISAM Index
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… … … …

… …

…

Do you see any problems with this?



Updating an ISAM Index
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… … … …

… …

…

1) When creating the index leave free space in each leaf page
2) The index stays the same, new data is added to the free space
3) If a leaf page overflows, we create an overflow page (or more)



An Example ISAM
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B+ Trees
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B+ Trees
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2, 3,5, 7

1713 3024

14,16,_,_ 19,20,22,_ 24,27,29,_ 33,34,38,39

Search proceeds as in ISAM via key comparisons

Find 5.     Find 15.     Find [24,∞)



B+ Tree Invariants
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• Keep space open for insertions in inner/data nodes.

• ‘Split’ nodes when they’re full

• Avoid under-using space

• ‘Merge’ nodes when they’re under-filled

• Maintain Invariant: All Nodes ≥ 50% Full

• (Exception: The Root)



Example
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Inner Nodes: 4 values, 5 pointers 

Data Nodes: 4 values



1713 3024

Inserting into B+ Trees
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2, 3,5, 7 14,16 19,20,22 24,27,29 33,34,38,39

Insert 8
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Inserting into B+ Trees
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2, 3,5, 72, 3 5,7,8, 5

Copy <5> into parent index
Insert 8
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Inserting into B+ Trees

36

Copy <5> into parent index

5

Move <17> into parent index : Root Split!
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Inserting into B+ Trees

37

Copy <5> into parent index

5

Move <17> into parent index : Root Split!



Inserting into B+ Trees
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5, 7,8 14,16 19,20,22 24,27,29 33,34,38,39

13 30245

17

2, 3

Why do we move, rather than copy the 17?
Are we guaranteed to satisfy our occupancy guarantee?



Deleting from B+ Trees
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5, 7,8 14,16 19,20,22 24,27,29 33,34,38,39

13 30245
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Delete 19   Delete 20

20,222222,24 27,29

27



27

Deleting from B+ Trees
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5, 7,8 14,16 33,34,38,39

13 305
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2, 3

Delete 24

22,24 27,292222,27,29



Non-Leaf Redistribution
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5, 7,8 14,16 22,27,29

20135 17
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2, 3 17,18 20,21
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33,34,38



Non-Leaf Redistribution
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5, 7,8 14,16 22,27,29

20135

17

22

2, 3 17,18 20,21

30

33,34,38

Intuitively, we rotate index entries 17-22 through the root


