
Indexes
Database Systems: The Complete Book

Ch. 13.1-13.3, 14.1-14.2

1

Hash-Based Indexes

2

3

What’s a Hash Function?

Hash Functions

• A hash function is a function that maps a large data value
to a small fixed-size value

• Typically is deterministic & pseudorandom

• Used in Checksums, Hash Tables, Partitioning, Bloom
Filters, Caching, Cryptography, Password Storage, …

• Examples: MD5, SHA1, SHA2

• MD5() part of OpenSSL (on most OSX / Linux / Unix)

• Can map h(k) to range [0,N) with h(k) % N (modulus)

4

Hash-based Indexes

5

• As with trees: request a key k and get
record(s) or record id(s) with k.

• Hash-based indexes support equality lookups

• … in constant time (vs log(n) for tree)

• … but don’t support range lookups

• Static vs Dynamic Hashing

• Tradeoffs similar to ISAM vs B+Tree

Static Hashing

6

0
1
2

...

N-1

h(k) % N

k

...

...
...

...

...

Primary Bucket Pages Overflow Pages
(Contiguous) (Linked List)

Static Hashing

7

• Buckets contain data entries.

• Hash fn maps the search key field of records to
one of a finite number of buckets (% N)

• N chosen when the index is created

• Too small N: Long overflow chains

• Too big N: Wasted space/Poor IO

Dynamic Solutions: Extendible and Linear Hashing

What’s to stop us from “just resizing the hashmap?”

Extendible Hashing

• Situation: A bucket becomes full

• Solution: Double the number of buckets!

• Expensive! (N reads, 2N writes)

• Idea: Add one level of indirection

• A directory of pointers to (noncontiguous)
bucket pages.

• Doubling just the directory is much cheaper.

• Can we double only the directory?

8

Extendible Hashing

9

4,12,32,16

1,5,21,13

10

15,7,19

00
01
10
11

gd = 2
A (ld=2)

B (ld=2)

C (ld=2)

D (ld=2)

Directory Data Pages

The directory and data pages have an associated “depth” (global/local)

To look up a value use the last gd bits of the key’s hash value as an index into the dir

Extendible Hashing

10

4,12,32,16

1,5,21,13

10

15,7,19

00
01
10
11

gd = 2
A (ld=2)

B (ld=2)

C (ld=2)

D (ld=2)

Insert 20 (h(20) = 1100)

gd = 3

(Need to Split Bucket A)

0

100
101
110
111

0
0
0

4,12,20

32,16

A2 (ld=3)

A (ld=3)

Dir entries not being split
point to the same bucket

Extendible Hashing

11

1,5,21,13

10

15,7,19

00
01
10
11

B (ld=2)

C (ld=2)

D (ld=2)

Insert 31 (h(31) = 1001)

gd = 3

(Need to Split Bucket B)

0

100
101
110
111

0
0
0

4,12,20

32,16

A2 (ld=3)

A (ld=3)

Don’t need to double dir
when splitting bucket w/ ld < gd

1,21

5,13,31

B2 (ld=3)

B (ld=3)

Extendible Hashing

12

• Global depth of directory

• Upper bound on # of bits required to
determine the bucket of an entry.

• Local depth of a bucket

• Exact # of bits required to determine if an
entry belongs in this bucket.

• Why use least significant bits (vs MSB)?

Extendible Hashing

• If the entire directory fits in memory, any equality search
can be answered in one disk access. (otherwise two)

• Is this true even if the directory spans multiple pages?

• 100 MB file, 100 B/rec = 1m records over 4k pages.

• Minimum of 25k directory entries.

• Hash table still likely to be < 1M

13

Extendible Hashing

• Hashing Issues:

• Need a uniform distribution of hash values.

• Even a true random function will not provide this

• What could happen if multiple keys have the same
hash value? (A hash ‘collision’)

• Deletions

• Deleting the last entry in a bucket allows it to be
merged with its ‘split image’.

• Can potentially halve directory if this happens.

14

Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 3
Officer.Rank > 2

Officer.Ship = ‘1701A’
AND

OR Officer.Rank > 3OR

15

Officer.Rank > 3OR

Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 3
Officer.Rank > 2

Officer.Ship = ‘1701A’

AND
OR

(
)

(
)

First convert all conditions to Conjunctive Normal Form (CNF)

16

Officer.Rank > 3OR

Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 2

Officer.Ship = ‘1701A’

AND

(
)

First convert all conditions to Conjunctive Normal Form (CNF)

Simplification may be possible
17

Indexing

• Indexes are typically built over one (key) field k

• Index stores mappings from key k to :

• k → The full tuple with key value k

• k → Record ID for Tuple with key value k

• k → List of Record/RecordIDs with key value k

• The choice of data to store is orthogonal to the
choice of how to map key to value.

18

Clustered

Unclustered

Unclustered

Multi-Attribute Indexes

19

We can create an ordering on <A,B>:
 <A1, B1> is less than <A2, B2>
whenever
 • A1 is less than A2
 • A1 = A2 and B1 is less than B2

Can we use this sort order to find all <A,B> where…

All A < 3?

All A = 3 and B = 2?

All A = 3 and B < 2?

All A < 3 and B = 2?

Access Paths and
Join Algorithms

Database Systems: The Complete Book
Ch. 15.4-15.6

20

Example

SELECT COUNT(*)
FROM Students S,
 CourseRegs R
WHERE S.Name = ‘Alice’
 AND S.Id = R.StudentId
 AND R.Grade > 90
 AND R.Grade < 100

What is the Equivalent Relational Algebra Expression?
21

Example

SELECT COUNT(*)
FROM Students S,
 CourseRegs R
WHERE S.Name = ‘Alice’
 AND S.Id = R.StudentId
 AND R.Grade > 90
 AND R.Grade < 100

How Do We Optimize This Expression?
22

Example

What Indexes Might be Helpful?

When?

23

Indexes

Index

Data

Index

Clustered Index Unclustered Index
(Secondary Index)

24

[Type of Index]

Indexes

[Type of Storage]

ISAM
B+Tree

Other Tree-Based
Hash Table

Other Hash-Based
Other…

In the Index
Clustered

Outside of the Index
Sorted
Heap

How the Data
is Organized

How the Data
is Laid Out

25

Multiple Indexes

Can we have multiple indexes over one table?

How does this affect our design considerations?

26

Access Paths
How do I read from the data

Originally Now

“File Scan + Select”

IndexScan(R, c, Index#)
R

σc

New Index Scan Operator

How do we pick?

27

Joins

• Two General Classes of Joins

• Equality (Equi-) Joins: R.B = S.B

• Inequality (Inequi-) Joins: R.B < S.B

• How do the outputs of these joins differ?

28

Inequi-joins are O(N) (as bad as NLJ)
We will focus on Equi-joins

2

Implementing: Joins
Solution 1 (Nested-Loop)

For Each (a in A) { For Each (b in B) { emit (a, b); }}

A B
29

Implementing: Joins
Solution 2 (Block-Nested-Loop)

30

Implementing: Joins
Solution 2 (Block-Nested-Loop)

1) Partition into Blocks 2) NLJ on each pair of blocks

31

Implementing: Joins
Solution 3 (Sort-Merge Join)

A B

3

1

5

2
5
4
1

Keep iterating on the set with the lowest value.

1

5
6

Done!

When you hit two that match, emit, then iterate both

32

Implementing: Joins
Solution 4 (External Hash)

3

1

5

2
5
4
1

6

Hash Hash

1) Build a hash table on both relations

2) In-Memory Nested-Loop Join on each hash bucket

(subdivide buckets using a different hash fn if needed)

Nested-Loop

1 5A B

33

Implementing: Joins
Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory

3

1

5

2
Hash

5
4
1

6

A B

Hash

1

5

(Essentially a more efficient nested loop join)34

Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!

35

What are the tradeoffs of each algorithm?

36

What properties
do we care about?

How do the
algorithms compare?

Implementing: Joins
Tradeoffs

Nested Loop

Block-Nested Loop

Index-Nested Loop

Sort-Merge

Hash

Grace Hash

Pipelined? Memory
Requirements?

Predicate
Limitation?

1/2

No

1/2

If Data Sorted

No

1/2

1 Table

2 ‘Blocks’

1 Tuple
(+Index)

Max of 1 Page per Bucket
and All Pages in Any Bucket

Hash Table

No

No

Single Comparison

Equality Only

Equality Only

Equality Only
37

Same as reqs. of
Sorting Inputs

Extra Content - External Sort

38

