
Indexes
Database Systems: The Complete Book 

Ch. 13.1-13.3, 14.1-14.2
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Hash-Based Indexes
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What’s a Hash Function?



Hash Functions

• A hash function is a function that maps a large data value 
to a small fixed-size value

• Typically is deterministic & pseudorandom

• Used in Checksums, Hash Tables, Partitioning, Bloom 
Filters, Caching, Cryptography, Password Storage, …

• Examples: MD5, SHA1, SHA2

• MD5() part of OpenSSL (on most OSX / Linux / Unix)

• Can map h(k) to range [0,N) with h(k) % N (modulus)
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Hash-based Indexes
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• As with trees: request a key k and get 
record(s) or record id(s) with k.

• Hash-based indexes support equality lookups

• … in constant time (vs log(n) for tree)

• … but don’t support range lookups

• Static vs Dynamic Hashing 

• Tradeoffs similar to ISAM vs B+Tree



Static Hashing

6

0
1
2

...

N-1

h(k) % N

k

...

...
...

...

...

Primary Bucket Pages Overflow Pages
(Contiguous) (Linked List)



Static Hashing
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• Buckets contain data entries.

• Hash fn maps the search key field of records to 
one of a finite number of buckets (% N)

• N chosen when the index is created

• Too small N: Long overflow chains

• Too big N: Wasted space/Poor IO

Dynamic Solutions: Extendible and Linear Hashing

What’s to stop us from “just resizing the hashmap?”



Extendible Hashing

• Situation: A bucket becomes full

• Solution: Double the number of buckets!

• Expensive! (N reads, 2N writes)

• Idea: Add one level of indirection

• A directory of pointers to (noncontiguous) 
bucket pages.

• Doubling just the directory is much cheaper.

• Can we double only the directory?
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Extendible Hashing
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Directory Data Pages

The directory and data pages have an associated “depth” (global/local)

To look up a value use the last gd bits of the key’s hash value as an index into the dir



Extendible Hashing
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Extendible Hashing
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Extendible Hashing
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• Global depth of directory

• Upper bound on # of bits required to 
determine the bucket of an entry.

• Local depth of a bucket

• Exact # of bits required to determine if an 
entry belongs in this bucket.

• Why use least significant bits (vs MSB)?



Extendible Hashing

• If the entire directory fits in memory, any equality search 
can be answered in one disk access. (otherwise two)

• Is this true even if the directory spans multiple pages?

• 100 MB file, 100 B/rec = 1m records over 4k pages.

• Minimum of 25k directory entries.

• Hash table still likely to be < 1M
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Extendible Hashing

• Hashing Issues:

• Need a uniform distribution of hash values.

• Even a true random function will not provide this

• What could happen if multiple keys have the same 
hash value? (A hash ‘collision’)

• Deletions

• Deleting the last entry in a bucket allows it to be 
merged with its ‘split image’.  

• Can potentially halve directory if this happens.
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Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 3
Officer.Rank > 2

Officer.Ship = ‘1701A’
AND

OR Officer.Rank > 3OR
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Officer.Rank > 3OR

Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 3
Officer.Rank > 2

Officer.Ship = ‘1701A’

AND
OR

(
)

(
)

First convert all conditions to Conjunctive Normal Form (CNF)
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Officer.Rank > 3OR

Breaking Up Conditions

Officer.Rank > 2
Officer.Ship = ‘1701A’
AND

(
)

OR Officer.Rank > 3

Boolean formulas can create complex conditions

Officer.Rank > 2

Officer.Ship = ‘1701A’

AND

(
)

First convert all conditions to Conjunctive Normal Form (CNF)

Simplification may be possible
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Indexing

• Indexes are typically built over one (key) field k

• Index stores mappings from key k to :

• k → The full tuple with key value k

• k → Record ID for Tuple with key value k

• k → List of Record/RecordIDs with key value k

• The choice of data to store is orthogonal to the 
choice of how to map key to value.
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Clustered

Unclustered

Unclustered



Multi-Attribute Indexes
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We can create an ordering on <A,B>:
  <A1, B1> is less than <A2, B2>
whenever
  • A1 is less than A2
  • A1 = A2 and B1 is less than B2

Can we use this sort order to find all <A,B> where…

All A < 3?

All A = 3 and B = 2?

All A = 3 and B < 2?

All A < 3 and B = 2?



Access Paths and 
Join Algorithms

Database Systems: The Complete Book 
Ch. 15.4-15.6
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Example

SELECT COUNT(*) 
FROM Students S, 
     CourseRegs R
WHERE S.Name = ‘Alice’
  AND S.Id = R.StudentId
  AND R.Grade > 90
  AND R.Grade < 100

What is the Equivalent Relational Algebra Expression?
21



Example

SELECT COUNT(*) 
FROM Students S, 
     CourseRegs R
WHERE S.Name = ‘Alice’
  AND S.Id = R.StudentId
  AND R.Grade > 90
  AND R.Grade < 100

How Do We Optimize This Expression?
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Example

What Indexes Might be Helpful?

When?
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Indexes

Index

Data

Index

Clustered Index Unclustered Index
(Secondary Index)
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[Type of Index]

Indexes

[Type of Storage]

ISAM
B+Tree

Other Tree-Based
Hash Table

Other Hash-Based
Other…

In the Index
Clustered

Outside of the Index
Sorted
Heap

How the Data 
is Organized

How the Data 
is Laid Out
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Multiple Indexes

Can we have multiple indexes over one table?

How does this affect our design considerations?
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Access Paths
How do I read from the data

Originally Now

“File Scan + Select”

IndexScan(R, c, Index#)
R

σc

New Index Scan Operator

How do we pick?
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Joins

• Two General Classes of Joins

• Equality (Equi-) Joins: R.B = S.B

• Inequality (Inequi-) Joins: R.B < S.B

• How do the outputs of these joins differ?
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Inequi-joins are O(N ) (as bad as NLJ)
We will focus on Equi-joins
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Implementing: Joins
Solution 1 (Nested-Loop)

For Each (a in A) { For Each (b in B) { emit (a, b); }}

A B
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Implementing: Joins
Solution 2 (Block-Nested-Loop)
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Implementing: Joins
Solution 2 (Block-Nested-Loop)

1) Partition into Blocks 2) NLJ on each pair of blocks
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Implementing: Joins
Solution 3 (Sort-Merge Join)

A B
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5

2
5
4
1

Keep iterating on the set with the lowest value.

1

5
6

Done!

When you hit two that match, emit, then iterate both
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Implementing: Joins
Solution 4 (External Hash)
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5

2
5
4
1

6

Hash Hash

1) Build a hash table on both relations

2) In-Memory Nested-Loop Join on each hash bucket

(subdivide buckets using a different hash fn if needed)

Nested-Loop

1 5A B
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Implementing: Joins
Solution 5 (Grace/Hybrid Hash)

Keep the hash table in memory
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1

5

2
Hash

5
4
1

6

A B

Hash

1

5

(Essentially a more efficient nested loop join)34



Implementing: Joins
Solution 6 (Index-Nested-Loop)

Like nested-loop, but use an index to make
the inner loop much faster!
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What are the tradeoffs of each algorithm?
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What properties 
do we care about?

How do the  
algorithms compare?



Implementing: Joins
Tradeoffs

Nested Loop

Block-Nested Loop

Index-Nested Loop

Sort-Merge

Hash

Grace Hash

Pipelined? Memory
Requirements?

Predicate
Limitation?

1/2

No

1/2

If Data Sorted

No

1/2

1 Table

2 ‘Blocks’

1 Tuple
(+Index)

Max of 1 Page per Bucket
and All Pages in Any Bucket

Hash Table

No

No

Single Comparison

Equality Only

Equality Only

Equality Only
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Same as reqs. of
Sorting Inputs 



Extra Content - External Sort
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