
Cost-Based Optimization
Database Systems: The Complete Book

Ch 2.3, 6.1-6.4,15, 16.4-16.5

1

Optimizing

2

Optimizing
• Some equivalence rules are always good…

• Which?

2

Optimizing
• Some equivalence rules are always good…

• Which?

• Some equivalence rules are sometimes good

• Which?

• What do we do about it?

2

Cost Estimation

• Compare many different plans by…

• … actually running the query

• … estimating the plan’s “cost”

3

Cost Estimation

4

Costs

5

Costs

• Memory Cost (Working Set Size)

5

Costs

• Memory Cost (Working Set Size)

• Compute Cost (“Big-O”)

5

Costs

• Memory Cost (Working Set Size)

• Compute Cost (“Big-O”)

• IO Cost (Pages read, Pages written)

5

6

The variable in all of these costs is the
arity (size) of a relation.

How do you compute
Arities?

• Heuristic Assumptions (Pick a “good enough” RF)

• Summary Statistics About The Data…

• Upper/Lower Bounds or Value Domains

• Distribution Summaries (Histograms)

• Data Sampling

7

How do you compute
Arities?

8

There is no perfect solution (yet)!

How do you compute
Arities?

8

There is no perfect solution (yet)!

We don’t need a perfect solution…
… we just need one that’s good enough

Summary Statistics
• Per-Attribute Bounds / Domain Statistics

• Assume a Uniform Distribution.

• Per-Attribute Histograms

• Use the histogram to model the data distribution

• Data Samples

• Use the samples to measure the RF

9

Uniform Distribution

10

A = 1

Uniform Distribution

10

A = 1
Chance of Hit = 1 / # of distinct values of A

Uniform Distribution

11

A 2 (1, 2, . . .)

Uniform Distribution

11

A 2 (1, 2, . . .)

Chance of Hit = | (1,2,3,…) | / # of distinct values of A

Uniform Distribution

12

A < 3

Uniform Distribution

12

A < 3
Chance of Hit = 3-Low(A) / High(A) - Low(A)

Uniform Distribution

13

./R.A=S.B

Uniform Distribution

13

./R.A=S.B

Chance of Hit Per B = 1 / # Distinct Values of A

Chance of Hit Per B = 1 (If B is a FK Reference)

Chance of Hit Per A = 1 (If A is a FK Reference)

Let’s apply it

14

SELECT O.Rank, COUNT(*),
FROM Officers O
WHERE O.Rank >= 2
 AND O.Age > 20 AND O.Age < 30
GROUP BY O.Rank
HAVING COUNT(DISTINCT O.Ship) > 2

What is the relational algebra plan for this expression?

Stats

15

O.Rank: 0-5 (Increments of 0.5; 11 total values)

O.Age: 16-100 (Increments of 1; 85 total values)

Officers: 40,000 tuples (over 500 pages)

Tree Indexes available over O.Age, O.Rank

What is the total cost in IOs?
What is the total cost in CPU/Tuples?

Histograms

16

Uniform Distributions are a strong assumption!

(data is often skewed)

Histograms

17

 People
 Name Age Rank
<“Alice”, 21, 1 >
<“Bob”, 20, 2 >
<“Carol”, 21, 1 >
<“Dave”, 19, 3 >
<“Eve”, 20, 2 >
<“Fred”, 20, 3 >
<“Gwen”, 22, 1 >
<“Harry”, 20, 3 >

SELECT Name
FROM People
WHERE Rank = 3
 AND Age = 20

RFAge = 1/nkeys = 1/4

…
 AND Age = 19

RFRank = 1/nkeys = 1/3
Age is best!

vs

Histograms

18

 People
 Name Age Rank
<“Alice”, 21, 1 >
<“Bob”, 20, 2 >
<“Carol”, 21, 1 >
<“Dave”, 19, 3 >
<“Eve”, 20, 2 >
<“Fred”, 20, 3 >
<“Gwen”, 22, 1 >
<“Harry”, 20, 3 >

SELECT Name
FROM People
WHERE Rank = 3
 AND Age = 20

RFAge-20 = 1/2

…
 AND Age = 19

RFRank = 1/3
Age is worst!

vs

Histograms

19

 People
 Name Age Rank
<“Alice”, 21, 1 >
<“Bob”, 20, 2 >
<“Carol”, 21, 1 >
<“Dave”, 19, 3 >
<“Eve”, 20, 2 >
<“Fred”, 20, 3 >
<“Gwen”, 22, 1 >
<“Harry”, 20, 3 >

SELECT Name
FROM People
WHERE Rank = 3
 AND Age = 20

RFAge-19 = 1/8

…
 AND Age = 19

RFRank = 1/3
Age is best!

vs

Histograms

20

19 2120 22

1
2

4

1

Histograms

21

19 21 22

1.5

2.5

Histograms

22

19 22

2

Histograms

23

0 5020 7010 30 40 60 80

SELECT … WHERE A = 33

10 10

63

22
30

15

0

20

Histograms

24

0 5020 7010 30 40 60 80

SELECT … WHERE A > 33

10 10

63

22
30

15

0

20

Using Constraints

• A Key attribute has one distinct value per row
(equality selects exactly one row)

• Foreign Key joins generate one row for each row in
the referencing relation.

• Cascade relationship guarantees EXACTLY one
row per reference.

25

Sampling

• Take a bunch of tuples from each relation.

• Run 2-3 different query plans on these tuples.

• Estimate the sampling factors for each operator
in the plan based on how many survive.

26

Sampling

27

How big is a “bunch?”

Sampling

• Problem: Very Selective Predicates

• Problem: Joins and the Birthday Paradox

• Problem: Counting Aggregate Groups

28

Very Selective Predicates

29

R

S

T

[100 Tuples]

Very Selective Predicates

30

R

S

T

[100 Tuples]

Very Selective Predicates

30

R

S

T

[0 Tuples]

Join Conditions

31 Image: Wikipedia

Join Conditions

31

Birthday Paradox
Need O(√|R|+|S|) tuples to reliably guess RF for equijoin

Image: Wikipedia

Estimating Join Costs

32

R S T U./ ./ ./

How many query plans are there?

Estimating Join Costs

33

There are (N-1)! (factorial) different
ways (plans) to evaluate this join.

Computing costs for all of
these plans is expensive!

Left-Deep Plans

34

R

S

T

U

./

./

./RHS Join Input is always a relation

1) Shrinks join search space
2) Allows index scans/lookups

Technique Pioneered by
the System R Optimizer

In Practice

35

Heuristics, Histograms and Sampling are
“good enough” to optimize the common cases.

In Practice

35

Heuristics, Histograms and Sampling are
“good enough” to optimize the common cases.

Some relational databases have manual overrides.

Oracle

36

SELECT /*+ INDEX (employees emp_department_ix)*/
 employee_id, department_id
 FROM employees
 WHERE department_id > 50;

Postgres

37

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
 name | f | -0.363388 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | Sp Railroad +
 | | | I- 580 +
 | | | I- 680 Ramp
 name | t | -0.284859 | I- 880 Ramp+
 | | | I- 580 Ramp+
 | | | I- 680 Ramp+
 | | | I- 580 +
 | | | State Hwy 13 Ramp

In Practice

38

Heuristics, Histograms and Sampling are
“good enough” to optimize the common cases.

In Practice

38

Heuristics, Histograms and Sampling are
“good enough” to optimize the common cases.

Some relational databases have manual overrides.

In Practice

38

Heuristics, Histograms and Sampling are
“good enough” to optimize the common cases.

Some relational databases have manual overrides.

All relational databases have an “EXPLAIN” operator

Postgres

39

EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

 QUERY PLAN

 Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)

Backup Slides

40

Join Algorithm
Comparison

41

Hybrid Hash

Index Nested Loop

(Block) Nested Loop

Hash Join

Sort/Merge Join

Can Support Pipelining?
RHS Hash Table needs

to fit in memory

Yes

LHS and RHS must both
be sorted on the join key

No

But?

Yes

RHS Table needs an
index on the join key

Yes

RHS Table needs
to fit in memoryYes

No buts. Hash Join
always materializes

Join Algorithm IO Costs

42

Hybrid Hash

Index Nested Loop

Nested Loop

Hash Join

Sort/Merge Join

R ./ S

[#pages of S] (if fits in mem)

|R| * [cost of one scan/lookup on S]

[#pages of S] (+sorting costs)

[#pages of S] (if fits in mem)

IO Cost

Block Nested Loop [#pages of R] + [#of block pairs] *
([#pages per block of R]+[#pages per block of S])

2*([#pages of R]+[#pages of S]) + [#pages of S]

Data Access IO Costs

43

Raw File

Static Hash Index

Linear Hash Index

Extendible Hash Index

Sorted File

ISAM Tree Index

B+ Tree Index

Full Scan Range Scan Lookup
N N N

N log2(N)+|R| log2(N)

>N >N ~1

>N+|D|
(random)

>N+|D|
(random)

2

>N >N ~1

~N ~log|T|(N)+|R| ~log|T|(N)

N
(random)

log|T|(N)+|R|
(random)

log|T|(N)

