Transactions &
Update Correctness

Correctness

e Data Correctness (Constraints)
* Query Correctness (Plan Rewrites)

- Update Correctness (Transactions)

What could go wrong?

* Parallelism: What happens if two updates
modify the same data”

e Maximize use of |O / Minimize Latencies.

* Persistence: What happens it something
breaks during an update?

 When is my data safe”

)es tﬁmean for a database
o be correct?

What is an Update”

* INSERT INTO ...?7
« UPDATE ... SET ... WHERE ...?

e Non-SQL?

Can we abstract?

Abstract Update Operatons

\[Transaction]/

Transaction

What does it mean for a databas
peration-to be correct?

Transaction Correctness

* Reliability in database transactions guaranteed by ACID

A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

e C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

e | - |solation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

e D - Durability (“once committed, remain committed”) -
usually ensured at hardware level

Atomicity

* A transaction completes by committing, or
terminates by aborting.

[0gging is used to undo aborted transactions.

 Atomicity: A transaction is (or appears as if it
were) applied in one ‘step’, independent of other
transactions.

* Allopsin a transaction commit or abort
together.

|solation

Tl: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

* [ntuitively, T1 transfers $100 from Ato B and T2
credits both accounts with interest.

 What are possible interleaving errors?

Example: Schedule

Time 11

A=A+100

B=B-100

OK!

12

A=1.06*A

B=1.06*B

Example: Schedule

Time 11

A=A+100

B=B-100

Not OK!

12

A=1.06*A

B=1.06*B

Example:The DBMS's View

Time 11 12
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)

Not OK!

What went wrong”

What could go wrong?

Reading uncommitted data
(write-read/WR conflicts; aka “Dirty Reads”)

Tl: R(A),W(A), R(B),W(B),ABRT
T2 : R(A),W(A),CMT,

Unrepeatable Reads
(read-write/RW conflicts)
Tl: R(A), R(A),W(A),CMT
T2: R(A),W(A),CMT,

What could go wrong?

Overwriting Uncommitted Data
(write-write/WW contflicts)

Tl: W(A), W(B),CMT
T2 : W(A),W(B),CMT,

Schedule

An ordering of read and write operations.

Serial Schedule

No interleaving between transactions at all

Serializable Schedule

Guaranteed to produce equivalent output
to a serial schedule

Conflict Equivalence

Possible Solution: Look at read/write, etc... conflicts!

Allow operations to be reordered as long as contlicts
are ordered the same way

Conflict Equivalence: Can reorder one schedule
into another without reordering conflicts.

Contlict Serializability: Conflict Equivalent to a serial
schedule.

Conflict Serializability

e Step 1: Serial Schedules are Always Correct

* Step 2: Schedules with the same operations
and the same conflict ordering are conflict-
eqguivalent.

» Step 3: Schedules contlict-eguivalent to an
always correct schedule are also correct.

e .. orcontlict serializable

Time

"R(A)

Conflict

VS.

Time

VS.

Equivalence

® | ook at the actual effects

® Can’t determine effects without running
® Look at the conflicts

® Joo strict

® | ook at the possible effects

22

Information Flow

Old State New State

“~ e
N— N—
R(..) ﬂ

Information Flow

Not Important Important

‘ 44 e
T1 Tzv?‘ I ~ —
R(...) ﬂR(...) ﬂR

a
-~
~_

(

AV
()

™ ((

Information Flow

View Serializability

Possible Solution: Look at data flow!

View Equivalence: All reads read from the same writer
Final write in a batch comes from the same writer

View Serializability: Conflict Equivalent to a serial schedule.

View EqQuivalence

* For all Reads R

* |f Rreads old state in S1, R reads old state in 52

e [f Rreads Ti's write in 51, R reads the the same write in 52
e For all values V being written.

e [f Wisthe last write to V in S1, W is the last write to V in S2

* |f these conditions are satisfied, S1 and S2 are view-equivalent

View Serializability

e Step 1: Serial Schedules are Always Correct

* Step 2: Schedules with the same information
flow are view-eqguivalent.

e Step 3: Schedules view-eqguivalent to an
always correct schedule are also correct.

e .. Orview serializable

Time 11 12 13
R(A)
W(A)
W(A)
W(A)

Example

Time 11 12 13

Write order irrelevant
R(A) (T3 overwrites either way)

Enforcing Serializability

» Conlflict Serializability:

* Does locking enforce conflict serializability”

* View Serializability

* |s view serializability stronger, wea
incomparable to conflict serializab

Ker, or

lity?

* \What do we need to enforce either fully?

How to detect conflict
serializable schedule”

13

R(b) \)F/r
TZ

Precedence Graph

Cycle!
W(d) Not Conflict serializable

Not conflict serializable but
view serializable

N

T1 . T2 Wey)

\ T3 W(y)

Satisfies 3 conditions of
view serializability W(x)

Every view serializable schedule which is not contflict
serializable has blind writes.

How can conflicts be avoided?

Optimistic
Concurrency
Control

Conservative \
Concurrency
Control

Conservative Concurrency
Control

* How can bad schedules be detected?
 What problems does each approach introduce?

* How do we resolve these problems?

Iwo-Phase Locking

 Phase 1: Acquire (do not release) locks.

 Phase 2: Release (do not acquire) locks.
Why?

Can we do even better?

T1 -

/ W(a)

13

Acyclic -
Conflict Serializable W(b)
2PL exists

Example

Need for shared and
exclusive locks

T T
L(d) : 3
R(d) \ /
L(a) T2

W(a)
IF_%((kk)))) Precedence Graph
L(b) t is conflict Serializable
W(b) but requires granular
R(d) control of locks

Need for shared and
exclusive locks

13

Lock requested

SL(d) §ock rea
R(d) Lockheld S | Yes No
XI_(a) in mode X | No No
W(a)
SL(b) SL(d)
R(b) R-SL(b)
XL(b)
W(b) R-XL(b)
R(d)
R-SL(d)

XL(d) W(d)
R-XL(d)

Reader/Writer (S/X)

* WWhen accessing a DB Entity...
* Table, Row, Column, Cell, etc...
* Before reading: Acquire a Shared (S) lock.
* Any number of transactions can hold S.
* Before writing: Acquire an Exclusive (X) lock.

e |f atransaction holds an X, no other transaction
can hold an S or X.

