ARIES (& Logging)

Database Systems: The Complete Book
Ch 17



Transaction Correctness

* Reliability in database transactions guaranteed by ACID

A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

e C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

e | - |solation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

e D - Durability (“once committed, remain committed”) -
usually ensured at hardware level



What does it mean for a transaction to be committed?
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Votivation

Committed Transactions.
These should be present when the DB restarts.
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 How do we guarantee durability under failures?

 How do aborted transactions get rolled back?

 How do we guarantee atomicity under failures?



Problem 1: Providing durability under tailures.



Simplified Model
When a write succeeds, the data iIs completely written




Problems

* A crash occurs part-way through the write.

e A crash occurs before buffered data is written.
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Write-Anhead Logging

Before writing to the database,
first write what you plan to write
to a log file...

Log
W(A:10)

11 Image copyright: OpenClipart (rgl024)



Write-Anhead Logging

Once the log is safely on disk
you can write the database

Log
W(A:10)
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Write-Anhead Logging

Log Is append-only,
SO writes are always
efficient

Log
W(A:10)
W(C:8)
W(E:9)
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Write-Anhead Logging

...allowing random writes

to be safely batched g 10
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Problem 2: Providing rollback.
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Single DB Model
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Single DB Model
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Single DB Model
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Single DB Model

Txn 1 TXn 2
A =20 E = 19
B=14 =B =15
=» COMMIT ABORT
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Single DB Model

Txn 1 TXn 2
A = 20 E = 19
B = 14 B = 15
= COMMIT = ABORT
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Staged DB Model

Txn 1
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ABORT
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Staged DB Model

Txn 1
A = 20
B = 14
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B = 15
= ABORT
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Staged DB Model
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|s staging always possible?
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e Staging takes up more memory.

 Merging after-the-tact can be harder.

* Merging after-the-tfact introduces more latency!
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for the single database model
Problem 2: Providing roIIbaCkA

20



UNDO Logging

N
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UNDO Logging

Active Xacts

Xact: 1,
Xact:2,
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UNDO Logging
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UNDO Logging

Active Xacts Log

| 43: W(A:8-10)
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UNDO Logging

Active Xacts Log

| 43: W(A:8-10)
Xa&ABORE: 45 wPid: W(C:558)

Xact:2,Log: 32  45: W(E:16-9)
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UNDO Logging

Active Xacts Log

| *43: W(A:8->10)
Xa&BORD: 45 44: W(C:5-8)

Xact:2,Log: 32  45: W(E:16~9)
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. og Sequence Number

Linked Lists

Transaction Table

Prev Inegee ...

XID, LastLSN

~

LSN, Prev LSN,
Hirev Image ...

ABORT
[XID]

(necessary for crash recovery)
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Problem 3: Providing atomicity.
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Goal: Be able to reconstruct all state at the time
of the DB’s crash (minus all running xacts)
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What state is relevant?
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In-Memory

Only!

Active Xacts

Xact: 1,
Xact:2,

| 0Q: 45

_0Q: 32

DB State

On-Disk L

(or rebuildable) &
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Log b 8

43: W(A:8->10) 18

44: W(C:5-8)

45: W(E:16-9) 6 9

37 Image copyright: OpenClipart (rgl024)



Rebuilding the Xact Table

Log every COMMI
(replay triggers commit process)

Log every ABORT
(replay triggers abort process)

New message: END
(replay removes Xact from Xact Table)

What about BEGIN?
(when does an Xact get added to the Table”)
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Transaction Commit

Write Commit Record to Log

All Log records up to the transaction’s LastLSN are
flushed.

* Note that Log Flushes are Sequential,
Synchronous Writes to Disk

Commit() returns.

Write End record to log.
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Simple Transaction Abort
(supporting crash recovery)

* Before restoring the old value of a page, write a
Compensation Log Record (CLR).

* Logging continues during UNDO processing.
 CLR has an extra field: UndoNextLSN

* Points to the next LSN to undo (the PrevLSN of
the record currently being undone)

» CLRs are never UNDOne.
 But might be REDOne when repeating history.

* (Why?)
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Rebuilding the Xact Table

Optimization: Write the Xact Table to the log periodically.
(checkpointing)
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ARIES Crash Recovery

Oldest log record

Start from checkpoint stored in ~ of transaction --|-- A
master record. active at crash

Analysis: Rebuild the Xact Smallest recLSN

Table

in dirty page table--}--

after Analysis
Redo: Replay operations from A

all live Xacts (even
uncommitted ones). Last Checkpoint--]--

Undo: Revert operations from
all uncommitted/aborted CRASH -----%--- yo v

Xacts. AR U
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