ARIES (& Logging)

Database Systems: The Complete Book
Ch 17

Transaction Correctness

* Reliability in database transactions guaranteed by ACID

A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

e C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

e | - |solation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

e D - Durability (“once committed, remain committed”) -
usually ensured at hardware level

What does it mean for a transaction to be committed?

the xact’s
effects

are visible
forever

commit
returns
successfully

commit
returns
successfully

commit
called but
doesn't
return

the xact’'s
effects

are visible
forever

the xact’s
effects

may be
visible

Votivation

Committed Transactions.
These should be present when the DB restarts.

2 (, . |

T3

T4 < =

TS N . f

- =" Uncommitted Transactions.

These should leave no trace

6 Image copyright: Wikimedia Commons

 How do we guarantee durability under failures?

 How do aborted transactions get rolled back?

 How do we guarantee atomicity under failures?

Problem 1: Providing durability under tailures.

Simplified Model
When a write succeeds, the data iIs completely written

Problems

* A crash occurs part-way through the write.

e A crash occurs before buffered data is written.

10

Write-Anhead Logging

Before writing to the database,
first write what you plan to write
to a log file...

Log
W(A:10)

11 Image copyright: OpenClipart (rgl024)

Write-Anhead Logging

Once the log is safely on disk
you can write the database

Log
W(A:10)

12 Image copyright: OpenClipart (rgl024)

Write-Anhead Logging

Log Is append-only,
SO writes are always
efficient

Log
W(A:10)
W(C:8)
W(E:9)

13 Image copyright: OpenClipart (rgl024)

Write-Anhead Logging

...allowing random writes

to be safely batched g 10
12
Log b 8
W(A:10) 18
W(C:8)
W(E:9) 6 9

14 Image copyright: OpenClipart (rgl024)

Problem 2: Providing rollback.

15

Single DB Model

-
\.L/
Txn 2
8
“» E = 19
ABORT .
18
106

16 Image copyright: OpenClipart (rgl024)

Single DB Model

E
\.L/
Txn 2
g 20
“» E = 19
B = 15 12
ABORT .
18
16

17 Image copyright: OpenClipart (rgl024)

Single DB Model

-

Q

=
8
| &
5

20

18

16 19

18 Image copyright: OpenClipart (rgl024)

Single DB Model

Txn 1 TXn 2
A =20 E = 19
B=14 =B =15
=» COMMIT ABORT

19

-

Q

~_
N—’
g

20

12 14

5
18

16 19

Image copyright: OpenClipart (rgl024)

Single DB Model

Txn 1 TXn 2
A = 20 E = 19
B = 14 B = 15
= COMMIT = ABORT

20

-

Q

~_
N—’
g

20

2 14 15

5
18

16 19

Image copyright: OpenClipart (rgl024)

Staged DB Model

Txn 1
w» A = 20
B = 14
COMMIT
TXn 2
w» E = 19
B = 15

ABORT

21 Image copyright: OpenClipart (rgl024)

Staged DB Model

Txn 1
A = 20
B = 14
) COMMIT

Txn 2
E = 19
B = 15
= ABORT

22

18

¥6 19

Image copyright: OpenClipart (rgl024)

Staged DB Model

Txn 1
A = 20
B = 14
) COMMIT

TXn 2

E = 19
B = 15
= ABORT

-

~

/

~_
N—’
g

23

20
12 14
5
18

16

Image copyright: OpenClipart (rgl024)

|s staging always possible?

24

e Staging takes up more memory.

 Merging after-the-tact can be harder.

* Merging after-the-tfact introduces more latency!

25

for the single database model
Problem 2: Providing roIIbaCkA

20

UNDO Logging

N
—
Store both the “old” and the “new” £ 10
values of the record being replaced
12
Log b 8
W(A:8-10) 18
W(C:5-8)
1B 9

W(E:16-9)

27 Image copyright: OpenClipart (rgl024)

UNDO Logging

Active Xacts

Xact: 1,
Xact:2,

| 0Q: 45

_0Q: 32

~_

N’
g 10

12
Log b 8

43: W(A:8->10) 18

44: W(C:5-8)

16 9

45: W(E:16-9)

28 Image copyright: OpenClipart (rgl024)

UNDO Logging

—
N’
g 10
12
Active Xacts Log b 8
Xa&XB - 45 43: W(A:8-10) 18
ARBORT 44: W(C:5-8)
Xact:2, Log: 32 wip4a5: W(E:16-9) 6 9

29 Image copyright: OpenClipart (rgl024)

UNDO Logging

Active Xacts Log

| 43: W(A:8-10)
Xa&BORD: 45 44: W(C:5-8)

Xact:2, Log: 32 wpdas5: W(E:16-9)

30 Image copyright: OpenClipart (rgl024)

UNDO Logging

Active Xacts Log

| 43: W(A:8-10)
Xa&ABORE: 45 wPid: W(C:558)

Xact:2,Log: 32 45: W(E:16-9)

31 Image copyright: OpenClipart (rgl024)

UNDO Logging

Active Xacts Log

| *43: W(A:8->10)
Xa&BORD: 45 44: W(C:5-8)

Xact:2,Log: 32 45: W(E:16~9)

32 Image copyright: OpenClipart (rgl024)

. og Sequence Number

Linked Lists

Transaction Table

Prev Inegee ...

XID, LastLSN

~

LSN, Prev LSN,
Hirev Image ...

ABORT
[XID]

(necessary for crash recovery)

33

Problem 3: Providing atomicity.

34

Goal: Be able to reconstruct all state at the time
of the DB’s crash (minus all running xacts)

35

What state is relevant?

36

In-Memory

Only!

Active Xacts

Xact: 1,
Xact:2,

| 0Q: 45

_0Q: 32

DB State

On-Disk L

(or rebuildable) &

~——’
g 10

On-Disk 12
Log b 8

43: W(A:8->10) 18

44: W(C:5-8)

45: W(E:16-9) 6 9

37 Image copyright: OpenClipart (rgl024)

Rebuilding the Xact Table

Log every COMMI
(replay triggers commit process)

Log every ABORT
(replay triggers abort process)

New message: END
(replay removes Xact from Xact Table)

What about BEGIN?
(when does an Xact get added to the Table”)

38

Transaction Commit

Write Commit Record to Log

All Log records up to the transaction’s LastLSN are
flushed.

* Note that Log Flushes are Sequential,
Synchronous Writes to Disk

Commit() returns.

Write End record to log.

39

Simple Transaction Abort
(supporting crash recovery)

* Before restoring the old value of a page, write a
Compensation Log Record (CLR).

* Logging continues during UNDO processing.
 CLR has an extra field: UndoNextLSN

* Points to the next LSN to undo (the PrevLSN of
the record currently being undone)

» CLRs are never UNDOne.
 But might be REDOne when repeating history.

* (Why?)

40

Rebuilding the Xact Table

Optimization: Write the Xact Table to the log periodically.
(checkpointing)

41

ARIES Crash Recovery

Oldest log record

Start from checkpoint stored in ~ of transaction --|-- A
master record. active at crash

Analysis: Rebuild the Xact Smallest recLSN

Table

in dirty page table--}--

after Analysis
Redo: Replay operations from A

all live Xacts (even
uncommitted ones). Last Checkpoint--]--

Undo: Revert operations from
all uncommitted/aborted CRASH -----%--- yo v

Xacts. AR U

42

