

Temporal (focusing on this one today)

Bi-Temporal (Physical Time vs Registered/Recorded Time)

Spatial (2d, 3d)

Spatio-Temporal (3-4d)

Types of data

SELECT A.Month, A.Sales-B.Sales / B.Sales FROM (SELECT … AS Month, SUM(…) AS Sales FROM …) A,
(SELECT … AS Month, SUM(…) AS Sales FROM …) B WHERE A.Month = B.Month + 1

Find the % change in monthly sales, each month

SELECT Product, SUM(…) AS Sales FROM … WHERE date = today - 1 ORDER BY Sales Desc LIMIT 5 UNION
ALL SELECT Product, SUM(…) AS Sales FROM … WHERE date = today - 2 ORDER BY Sales Desc LIMIT 5, …

Find the daily top-5 products by sales in the last week

… almost impossible to express if n is a parameter (query size depends on N)

Find the trailing n-day moving average of sales.

Types of queries

Sequential Data

Define a sequence (by sorting the relation)

Fixed Physical Size: N records exactly

Fixed Logical Size: e.g., Events within N hours of one another

Generate all subsequences of fixed size

Compute an aggregate over each subsequence (like a group-by query)

In-Class Example

SELECT L.state, T.month,
 AVG(S.sales) OVER W as movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid
 AND S.locid = L.locid
WINDOW W AS (
 PARTITION BY L.state
 ORDER BY T.month
 RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING
 AND INTERVAL ‘1’ MONTH FOLLOWING
)

Partition By is like Group By

Order By Required

Range Between Required to define the size of the window (logical vs physical)

Aggregates defined OVER W

Semantics

Semantics:

The WINDOW Operator

Define a sequence (by sorting the relation)

Fixed Physical Size: N records exactly

Fixed Logical Size: e.g., Events within N hours of one another

Generate all subsequences of fixed size

Compute an aggregate over each subsequence (like a group-by query)

In-Class Example

SELECT L.state, T.month,
 AVG(S.sales) OVER W as movavg
FROM Sales S, Times T, Locations L
WHERE S.timeid = T.timeid
 AND S.locid = L.locid
WINDOW W AS (
 PARTITION BY L.state
 ORDER BY T.month
 RANGE BETWEEN INTERVAL ‘1’ MONTH PRECEDING
 AND INTERVAL ‘1’ MONTH FOLLOWING
)

Partition By is like Group By

Order By Required

Range Between Required to define the size of the window (logical vs physical)

Aggregates defined OVER W

Semantics

Semantics:

The WINDOW Operator

OLAP: Fixed Data, Changing Query

OLTP: Changing data, minimal queries

Views on steroids

View: after a ~10% data update, just rerun the query from scratch

Stream: Fixed Queries, Changing data

Stream vs OLAP vs OLTP

Allowed to discard/defer showing results

Allowed to approximate results

No nested subqueries

All queries must be WINDOW queries (CEP allows hybrid Stream/OLAP queries)

Allowed to restrict language

Key Goal: Query Performance >> all

Each operator is its own processing component with a work queue

Operators push records from input to output, requiring per-operator input buffer(s)

Operator execution must be scheduled (multi-core execution permitted)

Push Model

Operators are given a “fair” amount of scheduled resources to process everything they can

Pushes into queues that are full drop the pushed tuples on the floor.

“Real-Time” streaming

On new record r into R: Join r x S, Index r

On new record s into S: Join R x s, Index s

Like view, for R x S:

Stream Join Algo

Push records to the head.

Pull records from the tail

Be able to look-up records for equi/range joins

Requirements:

Linked Hash-Map, Linked Tree Map

Implementation

Stream Join Data Structures

Linked List + Aggregate

O(1) update cost

SUM/AVG/COUNT (ring aggregates)

Linked List + Merkle-ish Trees

O(logN) update cost

MIN/MAX (semiring aggregates)

Window Aggregate Data Structures

Streams

Stream Queries

OLAP: Fixed Data, Changing Query

OLTP: Changing data, minimal queries

Views on steroids

View: after a ~10% data update, just rerun the query from scratch

Stream: Fixed Queries, Changing data

Stream vs OLAP vs OLTP

Allowed to discard/defer showing results

Allowed to approximate results

No nested subqueries

All queries must be WINDOW queries (CEP allows hybrid Stream/OLAP queries)

Allowed to restrict language

Key Goal: Query Performance >> all

Each operator is its own processing component with a work queue

Operators push records from input to output, requiring per-operator input buffer(s)

Operator execution must be scheduled (multi-core execution permitted)

Push Model

Operators are given a “fair” amount of scheduled resources to process everything they can

Pushes into queues that are full drop the pushed tuples on the floor.

“Real-Time” streaming

On new record r into R: Join r x S, Index r

On new record s into S: Join R x s, Index s

Like view, for R x S:

Stream Join Algo

Push records to the head.

Pull records from the tail

Be able to look-up records for equi/range joins

Requirements:

Linked Hash-Map, Linked Tree Map

Implementation

Stream Join Data Structures

Linked List + Aggregate

O(1) update cost

SUM/AVG/COUNT (ring aggregates)

Linked List + Merkle-ish Trees

O(logN) update cost

MIN/MAX (semiring aggregates)

Window Aggregate Data Structures

Streams

Stream Queries

