

of Cores

Resources Shared between each core

Resources available to each core

Everyone can read from/write to the same address space

Shared Memory

As shared memory, but explicit that some regions of memory (known in advance) can be accessed faster.

Non-Uniform Memory Access

Each core has its own local resources (e.g., RAM), and a shared resource. (similar to NUMA)

Shared Disk

aka “Shared Nothing”

Each core has its own local resources, and must explicitly send messages to other nodes

Message-Passing

All models are equivalent in terms of expressive power, but differ in how “aware” the user needs to be about the
cost of coordination when designing a system. Shared memory = 0% awareness, Message passing = 100%
awareness

Communication Model

Network, HDD, SSD, RAM, L1 Cache, L2 Cache, L3 Cache

Memory Hierarchy

Terms:

(typically) Shared L2 cache

On-Chip Interconnect

Multi-Core CPUs

Shared RAM

Motherboard Interconnect

Multi-CPU Devices

Network interconnect only

Multi-Node

Parallelism Models

Parallelism Concepts

AB1: Run AB on half the data

AB2: Run AB on the other half of the data

Option 1: Data Parallelism

Step A produces outputs 1 at a time

Step B consumes A’s outputs

Option 2: Pipeline Parallelism

How do we subdivide a task (AB)

AB1 and AB2 don’t communicate (assumed to have all data upfront)

Data Parallelism

A sends everything to B

Pipeline Parallelism

Possibility 1: A sends everything to both B1, B2

Possibility 2: A sends some things to B1, some to B2

A * (B1 + B2)

Only Possibility: A1, A2 both send everything to B (Fold/Reduce)

(A1 + A2) * B

Possibility 1: A1 sends everything to B1, A2 to B2 (Map)

Possibility 2: A1,A2 send some things to B1, some to B2 (Shuffle)

Possibility 3: A1,A2 send everything to both B1,B2

(A1 + A2) * (B1 + B2)

Both

Spout = Data Source

Bolt = Operator

Two types ofOperators

A parallelism level for each bolt

A set of pipes linking bolts

Workflow definition declares...

Bolts not called explicitly: just read from their pipes.

Bolts manually determine which pipe to send data into

Bolts see a set of input and output pipes

Storm Model

Code that reads 1 record (at a time), and produces any number of key/value pairs

Map task (purely parallel)

k/v pairs grouped by keys

Shuffle (internal process)

Code that reads 1 key + an iterator over values with that key

Reduce task

A “pre-reduce” step where values for the same key are “combined” (see Aggregates, below)

Combine Task

E.g., word count example?

Map/Reduce Model

Communication

Logical unit of data/computation

E.g., A Tuple.

What is one “fragment” of data?

Partitioning Strategy 1: Random

Hard to balance the size of each bucket

Partitioning Strategy 2: By Range

Effectively random for range lookups

Remains unbalanced if some records are “common”

Partitioning Strategy 2: By Hash

Similar issues as indexing

How do we decide which logical unit(s) of data are grouped together (buckets)?

Partitioning

Each Message/Write is an overhead

Goal: Minimize data transferred

IO is Slooooooooow

Operator Parallelism

AB1: Run AB on half the data

AB2: Run AB on the other half of the data

Option 1: Data Parallelism

Step A produces outputs 1 at a time

Step B consumes A’s outputs

Option 2: Pipeline Parallelism

How do we subdivide a task (AB)

AB1 and AB2 don’t communicate (assumed to have all data upfront)

Data Parallelism

A sends everything to B

Pipeline Parallelism

Possibility 1: A sends everything to both B1, B2

Possibility 2: A sends some things to B1, some to B2

A * (B1 + B2)

Only Possibility: A1, A2 both send everything to B (Fold/Reduce)

(A1 + A2) * B

Possibility 1: A1 sends everything to B1, A2 to B2 (Map)

Possibility 2: A1,A2 send some things to B1, some to B2 (Shuffle)

Possibility 3: A1,A2 send everything to both B1,B2

(A1 + A2) * (B1 + B2)

Both

Spout = Data Source

Bolt = Operator

Two types ofOperators

A parallelism level for each bolt

A set of pipes linking bolts

Workflow definition declares...

Bolts not called explicitly: just read from their pipes.

Bolts manually determine which pipe to send data into

Bolts see a set of input and output pipes

Storm Model

Code that reads 1 record (at a time), and produces any number of key/value pairs

Map task (purely parallel)

k/v pairs grouped by keys

Shuffle (internal process)

Code that reads 1 key + an iterator over values with that key

Reduce task

A “pre-reduce” step where values for the same key are “combined” (see Aggregates, below)

Combine Task

E.g., word count example?

Map/Reduce Model

Communication

Logical unit of data/computation

E.g., A Tuple.

What is one “fragment” of data?

Partitioning Strategy 1: Random

Hard to balance the size of each bucket

Partitioning Strategy 2: By Range

Effectively random for range lookups

Remains unbalanced if some records are “common”

Partitioning Strategy 2: By Hash

Similar issues as indexing

How do we decide which logical unit(s) of data are grouped together (buckets)?

Partitioning

Each Message/Write is an overhead

Goal: Minimize data transferred

IO is Slooooooooow

Operator Parallelism

AB1: Run AB on half the data

AB2: Run AB on the other half of the data

Option 1: Data Parallelism

Step A produces outputs 1 at a time

Step B consumes A’s outputs

Option 2: Pipeline Parallelism

How do we subdivide a task (AB)

AB1 and AB2 don’t communicate (assumed to have all data upfront)

Data Parallelism

A sends everything to B

Pipeline Parallelism

Possibility 1: A sends everything to both B1, B2

Possibility 2: A sends some things to B1, some to B2

A * (B1 + B2)

Only Possibility: A1, A2 both send everything to B (Fold/Reduce)

(A1 + A2) * B

Possibility 1: A1 sends everything to B1, A2 to B2 (Map)

Possibility 2: A1,A2 send some things to B1, some to B2 (Shuffle)

Possibility 3: A1,A2 send everything to both B1,B2

(A1 + A2) * (B1 + B2)

Both

Spout = Data Source

Bolt = Operator

Two types ofOperators

A parallelism level for each bolt

A set of pipes linking bolts

Workflow definition declares...

Bolts not called explicitly: just read from their pipes.

Bolts manually determine which pipe to send data into

Bolts see a set of input and output pipes

Storm Model

Code that reads 1 record (at a time), and produces any number of key/value pairs

Map task (purely parallel)

k/v pairs grouped by keys

Shuffle (internal process)

Code that reads 1 key + an iterator over values with that key

Reduce task

A “pre-reduce” step where values for the same key are “combined” (see Aggregates, below)

Combine Task

E.g., word count example?

Map/Reduce Model

Communication

Logical unit of data/computation

E.g., A Tuple.

What is one “fragment” of data?

Partitioning Strategy 1: Random

Hard to balance the size of each bucket

Partitioning Strategy 2: By Range

Effectively random for range lookups

Remains unbalanced if some records are “common”

Partitioning Strategy 2: By Hash

Similar issues as indexing

How do we decide which logical unit(s) of data are grouped together (buckets)?

Partitioning

Each Message/Write is an overhead

Goal: Minimize data transferred

IO is Slooooooooow

Operator Parallelism

Logical Unit of Data: 1 tuple

No data dependencies between tuples

Select, Project, Union

Reduce Messy! No parallelism

Logical Unit of Data: 1 group

Fan-in aggregation

Compute x = A+B, y = C+D, z = ...

Compute x + y + z

Makes a “fan-in” tree. Log compute required vs Lin compute

E.g. SUM(A, B, C, D, …) = (A + B) + (C + D) + …

But can do better with algebraic aggregates

Aggregate

Logical Unit of Data: 1 tuple^2

No data dependencies between tuple pairs

… but can potentially rule out some candidate tuple pairs

R[1…N] x S[1…M] partitions: R[1] cloned M times, S[1] cloned N times (Total Data: NxM + MxN)

We can do better...

How much data needs to be transferred?

Hash Grid for EQ joins

Range Grid for InEQ joins

Data Partitioning

Join

RA Operators

Logical Unit of Data: 1 tuple

No data dependencies between tuples

Select, Project, Union

Reduce Messy! No parallelism

Logical Unit of Data: 1 group

Fan-in aggregation

Compute x = A+B, y = C+D, z = ...

Compute x + y + z

Makes a “fan-in” tree. Log compute required vs Lin compute

E.g. SUM(A, B, C, D, …) = (A + B) + (C + D) + …

But can do better with algebraic aggregates

Aggregate

Logical Unit of Data: 1 tuple^2

No data dependencies between tuple pairs

… but can potentially rule out some candidate tuple pairs

R[1…N] x S[1…M] partitions: R[1] cloned M times, S[1] cloned N times (Total Data: NxM + MxN)

We can do better...

How much data needs to be transferred?

Hash Grid for EQ joins

Range Grid for InEQ joins

Data Partitioning

Join

RA Operators

A LHS row with a join key that has no match on the RHS is wasted data transfer

Central Idea: Eq Joins are very selective

 1 int = 4/8 bytes of data

LINEITEM @ SF 1 = 6m Ints = 24/48MB

Big! Potentially lots of data being transferred

Can we do something smaller?

Tactic 1: Have the RHS send the LHS a list of its keys

Split keys into 2 groups (e.g., by a hash)

2 bits total!

RHS says whether there are any matching keys in group 1, and whether any in group 2

Good… but useless after both bits set

Tactic 2: Parity bit

Better, requires N bits!

Split keys into N groups

Every new tuple on the RHS has a 1/N chance to trigger a false positive for each row of the LHS

Can we reduce the chance of a false positive further?

Good… but becomes useless quickly

Tactic 3: Parity bits

Still only requires N bits

Use k hash functions to pick which groups a key goes into (groups sampled with replacement ok)

Assign each key into k / N groups

Can rule out membership if ANY of the k/N group bits aren’t set.

Need k/N tuples in RHS to align to trigger a false positive (much lower chance, see below).

Oddly enough, becomes useless far more slowly

Probability that 1 bit is set by 1 hash fn: 1/N

Probability that 1 bit is not set by 1 hash fn: 1-1/N

Probability that 1 bit is not set by k hash fns: (1-1/N)^k

… for m separate records: (1-1/N)^km

Probability that 1 bit is set by k hash fns for m records: 1 - (1-1/N)^km

or approximately (1-e^(-km/N))^k

The probability of a false positive, aka collision

Probability that all k bits are set: (1 - (1-1/N)^km)^k

Minimal P[collision] is at k ≈ c ∙ m/n

Some Math:

Tactic 4: Bloom filters

Bloom Join

A LHS row with a join key that has no match on the RHS is wasted data transfer

Central Idea: Eq Joins are very selective

 1 int = 4/8 bytes of data

LINEITEM @ SF 1 = 6m Ints = 24/48MB

Big! Potentially lots of data being transferred

Can we do something smaller?

Tactic 1: Have the RHS send the LHS a list of its keys

Split keys into 2 groups (e.g., by a hash)

2 bits total!

RHS says whether there are any matching keys in group 1, and whether any in group 2

Good… but useless after both bits set

Tactic 2: Parity bit

Better, requires N bits!

Split keys into N groups

Every new tuple on the RHS has a 1/N chance to trigger a false positive for each row of the LHS

Can we reduce the chance of a false positive further?

Good… but becomes useless quickly

Tactic 3: Parity bits

Still only requires N bits

Use k hash functions to pick which groups a key goes into (groups sampled with replacement ok)

Assign each key into k / N groups

Can rule out membership if ANY of the k/N group bits aren’t set.

Need k/N tuples in RHS to align to trigger a false positive (much lower chance, see below).

Oddly enough, becomes useless far more slowly

Probability that 1 bit is set by 1 hash fn: 1/N

Probability that 1 bit is not set by 1 hash fn: 1-1/N

Probability that 1 bit is not set by k hash fns: (1-1/N)^k

… for m separate records: (1-1/N)^km

Probability that 1 bit is set by k hash fns for m records: 1 - (1-1/N)^km

or approximately (1-e^(-km/N))^k

The probability of a false positive, aka collision

Probability that all k bits are set: (1 - (1-1/N)^km)^k

Minimal P[collision] is at k ≈ c ∙ m/n

Some Math:

Tactic 4: Bloom filters

Bloom Join

