' PMM((Q(S
Updqfes o
(2Qurs Ccn('inw‘)

B fails

S——

NO—H\ ‘\"? Hﬁ prens

— ¥ (4 restar ted

- \ ‘. ' _ 2 cafdes o & ﬂ‘s state
A (“%[
== .
X= 102 B Afals
ho 1ot petien T2 '
g el DPITE T Aus .
W B 0‘02‘54\“— hare an oy o date \ E\Mﬁ L]mj Z['u(j
u et of Thc dﬁ 1 (?i:}:‘m){) i Pfl\ﬁ reg{ar‘f\(d(
™ SW(‘E‘: DU(quDB

M =2 @f’ﬁ""‘ ¢ élehfrzﬁmar\g
frstbig) > Areowe 4 o S

22

|
T(cms 4 d(,‘aﬂ \
|

L
[

C (A»(C(Pt Pay .
a CCW'«{\ be; (‘ha}

ﬂ0105 ‘

L ¥odes the weitervaiyy,
[7 Noles tue teader “ait L

Hw7)\/

v Parallel Data

v Types of Parallelism

v Replication (Multiple copies of the same data)
e Better throughput for read-only computations
e Data safety

v Partitioning (Different data at different sites
e More space
e Better throughput for writes

e Sometimes better throughput for read-only computations

v Challenges
v Replication
¢ Reading the same value from each site.
v Partitioning

e Transactions (Update A and B atomically)

v Consensus

v Getting everyone to agree on something

¢ Did a transaction commit?
¢ In which order were the transactions applied?

e What is the current value of object A?

v Techniques

v Primary/Secondary (aka Leader/Follower, aka Master/Slave)
v Pick one node as the primary
e Deterministic property (lowest IP, etc...)
e Additional consensus protocol for leader selection
v Primary is the authoritative version
e All writes go to the primary first.
e Writes are replicated to the secondary(ies) if any exist.
e Secondaries can handle (potentially stale) reads, but not writes
v 2-Phase Commit
e Every time something happens, everyone communicates with everyone else.
¢ All participants signal readiness to participate in consensus
e A temporary, per-consensus task 'leader’ signals all other participants to vote
e All participants communicate their vote to the leader.

v Leader tallies votes based on goal requirements

e k-Data stability requires k replicas to acknowledge
e Commit/Abort requires unanimous acknowledgement
e The leader notifies everyone of the vote result.
v Log Consensus

e Sometimes possible. Nodes log messages in an agreed-upon order. Nodes agree to any message they receive
in the correct, agreed-upon order.

v Failure Modes

v Fail-Fast / Fail-Stop
e Software/Hardware failure that causes the node to crash (although it can eventually be restarted)
¢ The node stops functioning outright — no signs of life at all
v Non-Fail-Stop
e Software/Hardware failure that causes the node to behave incorrectly
e The node keeps responding, but does not respond according to the programmer’s expectations
v Byzantine Faults
e Software/Hardware failure that causes the node to behave as incorrectly as possible.
e The node responds in the most harmful way possible.
v Failures
v What can fail?
e The node itself
¢ The network connecting the nodes
e Part of the network connecting the nodes (partition)
v Does it matter which?
¢ [f the node crashes, it loses its local state and has to be restarted from scratch

¢ [f the network fails... both nodes continue to be active but are unaware of each other’s existence... but may be
aware of the existence of other nodes.

v Can a node tell which is which?
e No. If Nodes A and B are trying to reach consensus, and B stops responding, A has no clue why.

¢ So, what happens when the failure condition ends?

v Recovery in Primary/Secondary Replicas
v Secondary Node Failure
¢ No Harm. Secondary reboots and rejoins.
v Primary Node Failure
e A secondary can rise to take its place... Repeat leader selection process
e Primary reboots as a secondary
v Network Failure

e From the point of view of secondaries... identical to primary node failure.

v Partitions in Consensus

v Option 1: Assume Node Failure
e Maximize availability. Promote secondary to primary to ensure that there’s always a primary available.
e Creates risk of inconsistency, as there are now two primaries. Two authoritative versions of the data.
v Option 2: Assume Connection Failure
e Ensure consistency. Wait for network (or primary node) to recover.
e Affects availability. Can’t do anything until the primary recovers.
v CAP
¢ Consistency, Availability, Partition-Tolerance
e Pick any 2

e More precisely, pick a tradeoff between consistency and availability. How much of each are you willing to
sacrifice.

v Reader/Writer Stability

v In a system with N nodes, you want to read the ‘latest’ version that everyone agrees on.
v Failure mode:
¢ Receive Ack for write
e Successfully Read an earlier value
v Naive:
e Write to N nodes, wait for everyone to acknowledge write.
e Read from N nodes, wait for everyone to agree on read.
v Fault-Tolerant
e Write to N nodes, wait for w nodes to acknowledge write
¢ Read from N nodes, wait for r nodes to agree on read.
e [f w+r > N, there must be one overlapping node. Guaranteed to be reading at least latest acked value.

e Can tolerate F failuresif w +r-F >N

