Policy-Agnostic Oblivious
Computation

Qianchuan Ye

University at Buffalo

Y3 | Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

A Mental Game

RICHER OF US PAYS FOR DINER

How MUCH T MADE

\

HE

Andrew Yao. 1982. Protocols for Secure Computations

MPC To The Rescue

Secure multi-party computation (MPC) allows multiple
parties to perform a joint computation while keeping
their sensitive data secure

MPC To The Rescue

Secure multi-party computation (MPC) allows multiple
parties to perform a joint computation while keeping
their sensitive data secure

This can be achieved by cryptographic protocols,
such as Yao’s Garbled Circuits and other protocols

based on secret-sharing schemes

Oblivious Computation

 Computation that does not leak private
iInformation, directly or indirectly

Oblivious Computation

 Computation that does not leak private
iInformation, directly or indirectly

e Secure multi-party computation, fully
homomorphic encryption, virtualization, secure

CPU, etc

MOZILLA

Privacy Preserving Attribution for
Advertising

FEBRUARY 8, 2022 & MARTIN THOMSON

Advertising provides critical support for the Web. We've been looking to apply privacy
preserving_advertising technology to the attribution problem, so that advertisers can get

Ancwurare tAa imnartant Arnactinne writhhaanit horming privacy

0 Announcements - October 4, 2022
advertising campaigns are working. Attribution

Our progress on developing and incorporating pnderstand how their advertising campaigns

liques also help publishers understand how

privacy-enhancing technologies tion is crucial to advertising, current attribution

By Dennis Buchheim, Vice President, ing with a team from Meta (formerly Facebook)
Science & Ecosystem rsion measurement — or attribution — for

o @ o @ bution, or IPA.

ity to perform attribution while providing
privacy-preserving features. First, it uses

Last year, we shared our longer-term vision on privacy-enhancing technologies and Oowing any single entity — websites, browser
how we believe they will become foundational to the future of personalized advertising r behavior. Mozilla has some experience with
experiences. Today, we want to share an update on the progress Meta and the vacy-preserving_telemetry. Second, it is an
industry have made towards these efforts and how advertisers can get involved. duces results that cannot be linked to

ean that IPA cannot be used to track or profile
Industry momentum on privacy-enhancing technologies

Industry collaboration on privacy-enhancing technologies is essential for the o . .
for advertising businesses in terms of how they
pwser attribution options in IPA enable new and
aintaining privacy. The IPA proposal aims to
First, our proposal with Mozilla on a new privacy-preserving standard for ad ures with the match key concept, which allows
measurement, Interoperable Private Attribution (IPA), continues to advance within the of entities to cross-device attribution.

development of interoperable solutions and a shared set of standards to support a

free and open internet. This year, we saw collaboration turn into tangible progress.

World Wide Web Consortium's Private Advertising Technology Community Group

Incorporating PETs into Meta’s portfolio of advertising
solutions

Over the past year, we've also made progress developing our own portfolio of PET-
based solutions, particularly our Private Lift Measurement product, which uses secure
multi-party computation (MPC) to help advertisers understand how their campaigns

are performing while limiting what the advertiser and Meta can learn about a person.

Uplow
. AAAAAA
" AfAAAN
E Multi-jart _mplitation
] N~

7 N

For more than a year, we've been testing this solution with advertisers from around the
world, gathering feedback and improving the product's performance, and some of our

largest clients are now using Private Lift.

For example, a global financial services advertiser, who was not previously using Lift
measurement products, tried our Private Lift product to gain a more comprehensive
view into the incremental conversions their ads were driving, while keeping their
underlying data private. Specifically, the advertiser set up a test in which part of their
target audience received an ad and the other part of the audience did not, and then
compared conversions to understand what conversions were incremental. Their study
found that the test group drove 55% more conversions than the control group, which
was valuable insight into how many conversions would not have occurred without

advertising on Meta.

Along with Private Lift, we also began testing a new Private Computation solution,

known as Private Attribution, which keeps the advertiser's underlying data private by

(W3C PATCG). The goal of this proposal is to create a new standard for measurement e've recently proposed IPA to the Private
T I\ AA~IBSE-1LBAY BN ALY | lltutuqmmmugror PATCG. PATCG iS a qroup in the W3C

https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/

https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies/

Privacy-critical Applications

e Secure auction
* Voting
* Privacy-preserving machine learning

o Statistics about sensitive information

Writing Secure Applications

Writing Secure Applications

\‘fwé

High-level Programming Languages for MPC

» Fairplay [Malkhi et al. 2004]

 PICCO [Zhang et al. 2013]

e Obliv-C [Zahur and Evans 2015]

* ODbliVM [Liu et al. 2015]

 Wysteria/Wys™* [Rastogi et al. 2014, 2019]
* A\obliv [Darais et al. 2020]

* Viaduct [Acay et al. 2021]

e Symphony [Sweet et al. 2023]

A Secure Dating App

~WHERE SOULMATE WHERE SOULMATE
_ l

Input: Personal Profiles

Input: Preferences (as AST)
— Your- :,ab * Lam])u‘lrW scipntist, Omdf
oy, Salara + Yowr sahgﬂ/vb

>

AW, —

Nontrivial Data

Nontrivial Data

Nontrivial Data

12

Nontrivial Data

Private Structured Data

Gap #1

Rich Recursive Data Structures like trees

rsl H N

13

Gap #2: Complex Policies

Gap #2: Complex Policies

 Go beyond “private or not”

Gap #2: Complex Policies

 Go beyond “private or not”

* Policies can be complex for structured data

14

Gap #2: Complex Policies

 Go beyond “private or not”
* Policies can be complex for structured data

* A data structure may have multiple policies

14

Gap #3: Modularity

 Don’t want to enforce policies manually within the
application logic

15

Gap #3: Modularity

 Don’t want to enforce policies manually within the
application logic

e Separating privacy policies from program logic

15

Gap #3: Modularity

 Don’t want to enforce policies manually within the
application logic

e Separating privacy policies from program logic

* Allow for writing applications independently of the
policies

15

Gap #3: Modularity

Don’t want to enforce policies manually within the
application logic

Separating privacy policies from program logic

Allow for writing applications independently of the
policies

Allow for specitying and auditing policies
iIndependently of the functionality

15

Bridging The Gaps

Bridging The Gaps

* Rich: functional language with high-level
abstractions, e.g., structured data, higher-order
functions, and complex policies

10

Bridging The Gaps

* Rich: functional language with high-level
abstractions, e.g., structured data, higher-order

functions, and complex policies

e Safe: no private information is leaked throughout
the execution

10

Bridging The Gaps

* Rich: functional language with high-level
abstractions, e.g., structured data, higher-order

functions, and complex policies

e Safe: no private information is leaked throughout
the execution

 Easy: writing secure applications as easy as
writing standard applications

10

The Ideal

The Ideal

PoLI1CY,

The Ideal

The Ideal

POLICY, pyncTIoNAL
PROGRAM

POLICYJ_

The Ideal

POLICY, pyncTIoNAL
PROGRAM

POLICYJ_

The Ideal

POLICT, & cyncTIoNAL

\/L PROGRAM
SEuRe &

PROG RM/\ | POLICYZ_

The Ideal

POLICT, o cyncTIoNAL

\/L PROGRAM
SECURE 4 u SECURE
PROG RAM, PoLI(Y, = PRO&RAM,

The Ideal

+ X
POLICT, o CyncTioNAL =>
\/L PROGRAM

SECURE < ui SECURE
PROG RN‘/\‘ POLICYZ_ — PRO&RAM,

Overview

 What are complex privacy policies?

18

Overview

 What are complex privacy policies?

* How to encode private data and policies? |Rich]

18

Overview

 What are complex privacy policies?
* How to encode private data and policies? |Rich]

» How to enforce policies? [Safe]

18

Overview

What are complex privacy policies?
How to encode private data and policies? |Rich]
How to enforce policies? [Safe]

How to automatically enforce policies? [Easy]

18

Complex Policies

Policies for Flat Data

data patient =
{ 1d : 1nt;
age : 1nt;
height : 1nt;
welght : 1int; }

Simplest Policy

The whole record Is private

data patient =
{ 1d : 1nt;
age : 1nt;
height : 1int;
weight : 1int; }

21

Per-Field Policy

Height and weight are private

data patient =
{ 1d : 1nt;
age : 1nt;
height : 1nt;
weight : 1int; }

Either-Or Policy

Either ID or the data is private

data patient =
{ 1d" : 1nt;
age : 1nt;
height : 1nt;
weight : 1nt; }

* Based on privacy rules from the Health Insurance Portability and Accountability Act (HIPAA)

23

Policies for Recursive Data

data tree = Leaf | Node int tree tree

Policies for Recursive Data

data tree = Leaf | Node int tree tree

EMPTY

Policies for Recursive Data

data tree = Leaf | Node int tree tree

EMPTY PAYLOAD

Policies for Recursive Data

| EFT SUBTREE
i/

data tree = Leaf | Node int tree tree

EMPTY PAYLOAD

Policies for Recursive Data

LEF;T SURTREE
data tree = Leaf | Node int tree tree

EMPTY ppyloap | RIGHT SUBTREE

Policies for Recursive Data
L eaf

Policies for Recursive Data
Node 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf)

2/1 \3
AN

Policies for Recursive Data

Node 4 (Node 5 Leaf Leaf) Leaf

/\
/\

Policies for Recursive Data

* |Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

28

Policies for Recursive Data

* |Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

 Many possible policies (for trees):

28

Policies for Recursive Data

* |Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

 Many possible policies (for trees):

* Disclose maximum depth (hiding structural information, payload)

28

Policies for Recursive Data

Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

Many possible policies (for trees):
* Disclose maximum depth (hiding structural information, payload)

* Disclose spine upper bound (hiding partial structural information, payload)

28

Policies for Recursive Data

Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

Many possible policies (for trees):
* Disclose maximum depth (hiding structural information, payload)

* Disclose spine upper bound (hiding partial structural information, payload)

* Disclose spine (hiding payload)

28

Policies for Recursive Data

Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

Many possible policies (for trees):

* Disclose maximum depth (hiding structural information, payload)

* Disclose spine upper bound (hiding partial structural information, payload)
* Disclose spine (hiding payload)

* Disclose spine and some payload (hiding part of payload)

28

Policies for Recursive Data

* |Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

Many possible policies (for trees):

Disclose maximum depth (hiding structural information, payload)

Disclose spine upper bound (hiding partial structural information, payload)
Disclose spine (hiding payload)

Disclose spine and some payload (hiding part of payload)

Disclose everything! (hiding nothing)

28

Policies for Recursive Data

* |Impossible to hide everything! Need to disclose some information for
bounded representation and bounded computation.

Many possible policies (for trees):

Disclose maximum depth (hiding structural informtion, payload)

Disclose spine upper boundi(hiding partial structufal information, payload)

Disclose spine (hiding payload)

Disclose spine and some payload (hiding part of

Disclose everything! (hiding 20thind)

| ESS PRIVACY

_ MORE PRIVACY

28

A policy for a data specifies what information of
this data can be publicly shared, which can be
an arbitrary projection of the data, called
public view

29

Encoding private data and
policies

Challenges

An attacker Is one of the participants running the
program, so they can:

Observe the data structures themselves

31

Challenges

An attacker Is one of the participants running the
program, so they can:

Observe the data structures themselves: need to
obscure the shape of the data

31

Obscure Data Representation

data tree = Leaf | Node int tree tree

ode 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf) Node 4 (Node 5 Leaf Leaf) Leaf

/N \
A AN

Public View: Maximum Depth = 2

data tree = Leaf | Node int tree tree

Node 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf) Node 4 (Node 5 Leaf Leaf) Leaf
[1] [4]
[2] [3] [5] *

JAYRYAY I\

33

Public View: Maximum Depth = 2

data tree = Leaf | Node int tree tree

Node 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf) Node 4 (Node 5 Leaf Leaf) Leaf

33

Public View: Maximum Depth = 2

data tree = Leaf | Node int tree tree

Node 1 (Node 2 Leaf Leaf) (Node 3 Leaf Leaf) Node 4 (Node 5 Leaf Leaf) Leaf
[1] [4]
[2] (3] [5] *

34

Oblivious Algebraic Data Types (OADT)

obliv tree (k : nat) =
1f k = 0
then T
else 1 ¥ int X tree (k—1) X tree (k—1)

Oblivious Algebraic Data Types (OADT)
DEPENDE/\/T TYPE

obliv tree (k : nat) =
1f kK =0
then T
else 1 ¥ int X tree (k—1) X tree (k—1)

Oblivious Algebraic Data Types (OADT)
DEPENDENT TTPE

obliv tree (k nat)
1f kK =0
then T
else 1 ¥ int X tree (k—1) X tree (k—1)

Oblivious Algebraic Data Types (OADT)

DEPENDENT TYPE oyelic VIEW
obliv Trés (k 1 nat) = | Lo TE
then 1 N~

else 1 F int x tree (k=1) x tree (k—=1)

o

35

Oblivious Algebraic Data Types (OADT)

obliv tree (k : nat) =

if k=0 UNLT (TSOMORPHIC TC LEAF)

v, Ak L
Wi
57 B
A g
2 3
e 4
b
b £
P " 5
AR, 3
7}
4
]
A5
e
"(“
X

else 1 + int X tree (k—1) X tree (k—1)

36

Oblivious Algebraic Data Types (OADT)

Fint x tree (k—=1) X tree (k—1)

36

Oblivious Algebraic Data Types (OADT)

I
|
R 7 1003
o
e T
.ol
<3 v
e - i2g
(5 e
A T &
L3> 3
' 3 p
AN ~ e
AR 3
gy
K
p
55
e
w“
o
£
R

5 L
- ’
P ” i
L S
™ g
‘ot ot A

else 1 1nt X tree (k 1) X tree (k 1)

oBLl\IIOUS SW"\ ISOMDQPHIC To NODE

36

Oblivious Algebraic Data Types (OADT)

obliv tree (kK : nat) =
1f kK =0
then 1 ___ OBLIVIOUS INTEGER
else 1 + ‘. tree (k 1) >< tree (k 1)

oBLl\IIOUS SW"\ ISOMDQPHIC To NODE

36

Oblivious Algebraic Data Types (OADT)

obliv tree (kK : nat) =
1t k=0
then | ___ oBLIVIOUS INTEGER
tree (k—=1) X tree (k—1)

else 1 # int X

OBLIVIOUS SUM

I

)

+

An Example

int x (1 Fint x 1 x 1) x (1 Fintx 1 x 1)

33

An Example

tree 2 =1 Fint X (I Fint x 1 x 1) x (1 ¥ int x 1 x 1)

1 F int
1 Fint 1 F int

33

I

An Example

tree 2 =1 Fint X (1 Fint X 1 x 1) x (I Fint x 1 x 1)

A

1 ¥ int [1] [4]

NN N

+ int int [2] [3] [5] *

O A A A A

I I

33

OADTs Generalize Secure Integer

1nt

OADTs Generalize Secure Integer

1nt

1nt

OADTs Generalize Secure Integer

1nt

int#r int#s

1nt

OADTs Generalize Secure Integer

SECTION
(“ENCRYPTION)

o @] T
L: e o
R ¥, v~ ips
& g TP
I I I I I I l I | E LS -
=
RN M

1nt

1nt

OADTs Generalize Secure Integer

9,
RETRACTION int i ECTION)
(“DECRYPTION") (ECRYPTID/\/)

—==
<
1 ° o
: s W
VN (5 = e ind
R e & 2D
LS R ‘,_g,‘,“ g
S TS g m s o
SRR RN R AR sy e - Rl A
"
i
e

1nt

Secure Integer Has Public View!

{n:Z|width n=32}

int#r int#s

int 32

OADTs Are “Encryption Spaces”
Indexed By Public Views

{t:tree | depth t <k}

tree#tr treet#ts

tree k

41

Enforcing Privacy Policies

Challenges

An attacker Is one of the participants running the
program, so they can:

Observe how the data structures are used

43

Challenges

An attacker Is one of the participants running the
program, so they can:

Observe how the data structures are used: need to
prevent leakage through timing channel and control
flow channel

43

A Simple Example

fn sum (t : tree) : int =
match t with
| Leatf = 0

| Node x 1 r = x + sum 1 + sum r

Control Flow Channel

match t with
| Leaf = 0
| Node x 1 r = x 4+ sum 1l + sum r

Control Flow Channel

match t with
| Leaf = 0
| Node x 1 r = x 4+ sum 1l + sum r

J

X + sum 1 4+ sum r

45

Oblivious Operations

mux ([3] < [4]1) ([5]1 ¥ [11) ([61 ¥ [11)

Oblivious Operations

mux ([3] <

[47) ([5]1 # [1D) (6] ¥ 1D

46

Oblivious Operations

mux ([3] <

A
| P57 g
o -
s p - e S Ty Tty o ¥ o 7 WIS | R U - I Ty = = s P
| 4 R L L g S PR L~ Y G
RNCRRR T, G5F it WG > P

PRIVAT E coNDITION PRIVATE BRANCHES

46

Oblivious Operations

mux ([3] < [4]) ([5]1 ¥ [11) ([61 ¥ [1])
y
mux [true] ([5]1 + [11) ([6] ¥ [1])

47

Oblivious Operations

mux ([3] < [4]) ([5]1 ¥ [11) ([61 ¥ [1])
y
mux [true] ([5]1 + [11) ([6] ¥ [1])

Z
mux [truel [61 ([61 ¥ [11)

47

Oblivious Operations

mux ([3] < [4]) ([5]1 ¥ [11) ([61 ¥ [1])
y
mux [true] ([5]1 + [11) ([6] ¥ [1])
J
mux [truel [61 ([61 F [11)

v

mux [true] [6] [7]

47

Oblivious Operations

mux ([3] < [4]) ([5]1 ¥ [11) ([61 ¥ [1])
y
mux [true] ([5]1 + [11) ([6] ¥ [1])
J
mux [truel [61 ([61 F [11)

v

mux [true] [6] [7]

v
6]

47

Oblivious Operations

mux ([5] < [4]) ([5]1 ¥ [11) ([61 ¥ [11)

mux [false] ([5]1 + [11) ([6]1 + [11)

< +) €&

mux [false] [6] ([6]1 + [1])

<—

mux [false] [6] [7]

1
~
L

48

The same idea is generalized to other oblivious
operations for manipulating OADTs, and the
security-type system ensures these operations
are used securely

49

Type System and Formal Guarantees

Type System and Formal Guarantees

* Incorporates ideas from dependently typed
languages and security-typed languages

50

Type System and Formal Guarantees

* Incorporates ideas from dependently typed
languages and security-typed languages

 Formalized the core calculus (i.e. formal model of
the language)

50

Type System and Formal Guarantees

* Incorporates ideas from dependently typed
languages and security-typed languages

 Formalized the core calculus (i.e. formal model of
the language)

* Proved type system is sound and ensures an
obliviousness property: no private information
can be inferred by observing the execution traces

50

Type System and Formal Guarantees

* Incorporates ideas from dependently typed

Iﬁlf'\“l FalVe VFaVal ﬁlf'\A aVaVay IIF:'I'\I 'I'\ IY\I\A If'\lf'\“l FalVe VFaVWa

THEOREM 4.4 (OBLIVIOUSNESS). If e; ~ ey and - + ey :y, 1ty and - + ey 1, 1o, then

2
(1) e —" ¢/ if and only if e, —™ €/, for some €.

(2) if e —™ €, and e, —" ¢/, thene/ ~ €.
* Proved type system is sound and ensures an

obliviousness property: no private information
can be inferred by observing the execution traces

51

Type System and Formal Guarantees

* Incorporates ideas from dependently typed

lAam AL iA~NAA AR A Aan~ivibhg huosad lanAniAa~nAns
THEOREM 4.4 (OBLIVIOUSNESS). If e; ~ ey and - + ey :y, 1ty and - + ey 1, 1o, then
(1) e —" € if and only if e; —"™ ¢, for some €.
(2) if e '
Certified By & The Coqg Proof Assistant ™
* Pr

obliviousness property: no private information
can be inferred by observing the execution traces

51

So far, we are able to encode complex
policies for structured data and implement
private computation painstakingly

Recall

fn sum (t : tree) : int =
match t with
| Leatf = 0

| Node x 1 r = x + sum 1 + sum r

53

You Don’t Want To Write This

fn sum (k : nat) : tree k — int =
1f kK =0
then A_ = int#s 0
else At = match t with
| inl _ = int#s 0
| inr (x, 1, r) = x ¥ sum (k=1) 1 ¥ sum (k—=1) r

54

You Don’t Want To Write This

fn sum (k : nat) : tree k — int =
E4 0770
then A_ = int#s 0
else At = match t with
| inl _ = int#s ©

——

| inr (x, 1, r) = x Fsum (k=1) 1 ¥ sum (k=1) r

54

Entanglement of Program Logic And Policies

Entanglement of Program Logic And Policies

 Need to manually restructure the programs to capture the
policies and make sure the control flow only depends on the
public information

55

Entanglement of Program Logic And Policies

 Need to manually restructure the programs to capture the
policies and make sure the control flow only depends on the

public information

 Programs are harder to read, write and reason about

55

Entanglement of Program Logic And Policies

 Need to manually restructure the programs to capture the
policies and make sure the control flow only depends on the
public information

 Programs are harder to read, write and reason about

* Policies are harder to update and audit

55

Entanglement of Program Logic And Policies

 Need to manually restructure the programs to capture the
policies and make sure the control flow only depends on the
public information

 Programs are harder to read, write and reason about
* Policies are harder to update and audit

 We may want to support multiple policies at the same time

55

Entanglement of Program Logic And Policies

 Need to manually restructure the programs to capture the
policies and make sure the control flow only depends on the
public information

 Programs are harder to read, write and reason about
* Policies are harder to update and audit
 We may want to support multiple policies at the same time

 We may want to trade off between privacy and performance

55

Entanglement of Program Logic And Policies

\ : ! p(‘. ~ . N /-__' o (('(? .
I W s e iha ;
D Nty ‘Q(\'/,ﬁ% ’ Boilerplate
“ ! Nl g — '

7 mf Program Logic_;
Privacy Policies p# od S
-0)

-

56

Modularity / Policy-agnosticism

POL;‘L/ZY, n ! s -
N\
SECURE Z -t SECURE

PROG RAM ‘ POLL(Y, == PRO&RAM,

Automatically Enforcing
Privacy Policies

You Want 1o Write This

— e

fn sum (k : nat) (t : tree k) : int = ...

You Want 1o Write This

— e

fn sum (k : nat) (t : tree k) : int = ...

SUum

You Want 1o Write This

— e

fn sum (k : nat) (t : tree k) : int = ...

MAGIC (sum)

A Good First Step

A Good First Step

PR 1VAT E

A Good First Step

t
treet rT
T

A Good First Step

A Good First Step

RETRACTION | U
o) ¢ _SUM
treet#tr

A Good First Step

A Good First Step
RETRAC’TIDN SECTION

(“pERYPTION) ¢ =Ty “ENCRYPTION”)

A Good First Step

RACTION SECTION)
RET o “ENCRYPTION”)

A Good First Step

Sum
8 H O

int#s (sum (tree#tir k /t\))

| Y
-~ S U

t ——> o0

Tape Semantics: dynamically
repairs unsafe computation

An “Unsafe” Operation

IF | true] then true else false

An “Unsafe” Operation

1f [truel then true else false

An “Unsafe” Operation

1T [truel then true else false

PRIVATE PUBLIC

An “Unsafe” Operation

1T [truel then true else false

An “Unsafe” Operation

1T [truel then true else false

An Example

tape (IHE#S (IF [true] then 3 else 4))

An Example

tape (1nt#s (1f [true] then 3 else 4))

EVENT U\ALLY OBLIVIouS

65

Delay Unsafe Computation

tape (IHE#S (IF [true] then 3 else 4))

06

Can’t Leak If You Don’t Run The Program

Propagate Surrounding Computation

tape (Iﬁ%#s (IF [true] then 3 else 4))

v

tape (I? [true] then int#s 3 else int#s 4)

63

Propagate Surrounding Computation

tape (Iﬁf#s (IF [true] then 3 else 4))

v

tape (I? [true] then int#s 3 else int#s 4)

63

Propagate Surrounding Computation

tape (fﬁf#s (IF [true] then 3 else 4))

v

tape (YF [true] then int#s 3 else int#s 4)

63

Propagate Surrounding Computation

tape (IHE#S (IF [true] then 3 else 4))

v

tape (I? [true] then int#s 3 else int#s 4)

V

tape (EF [true] then [3] else [4])

63

Propagate Surrounding Computation

tape (Iﬁz#s (IF [true] then 3 else 4))

tape (I? [true] then int#s 3 else int#s 4)

tape (IF Ltrue] then [3] else [4])

63

Cancel Unsafe Computation

tape (IHE#S (IF [true] then 3 else 4))

v

tape (I? [true] then int#s 3 else int#s 4)

V

tape (EF [true] then [3] else [4])

)

mux [truel] [3] [4]

69

Cancel Unsafe Computation

tape (IHE#S (IF [true] then 3 else 4))

v

tape (I? [true] then int#s 3 else int#s 4)

V

tape (EF [true] then [3] else [4])

)

mux [truel] [3] [4]

v
3]

69

Similar ideas for other “unsafe”
operators

The language and type system
extended with this dynamic policy
enforcement are still sound and secure!

Modular Implementation

obliv tree (k : nat) = ...
fn treetts (k : nat) (t : tree) : tree k
fn tree#tr (k : nat) (f . tree k) : tree

— e

fn sum (k : nat) (t : tree k) : int =
tape (fﬁf#s (sum (tree#r k t)))

Modular Implementation

ONCE & FoR AL
obliv tree (k : nat) = ... N -— X RE “ SABLE

fn tree##ts (k : nat) (t : tree) : tree k = ..
fn tree#tr (k : nat) (€': tree K) : tree = ...

— e

fn sum (k : nat) (t : tree k) : int =
tape (Iﬁ?#s (sum (tree#tr k t)))

Modular Implementation

obliv tree’ (s : spine) = ...

fn tree’#ts (s : spine) (t : tree) : tree’ s
fn tree’#tr (s : spine) (€': tree’ s) : tree

A —

fn sum (s : spine) (t : tree’ s) : int =
tape (int#s (sum (tree’#r s t)))

73

We Did It!

We Did It!

* Rich: the language (Taype) is a high-level
functional language with supports for structured
data and complex policies

74

We Did It!

* Rich: the language (Taype) is a high-level
functional language with supports for structured
data and complex policies

e Safe: secure by construction by obliviousness
theorem

4

We Did It!

* Rich: the language (Taype) is a high-level
functional language with supports for structured
data and complex policies

e Safe: secure by construction by obliviousness
theorem

 Easy: writing application logic for the secure
computation Is as easy as writing normal programs

4

Case Studies

Medical records
Dating application
Secure calculator
K-means

Private decision trees

l4s)

Private Decision Tree Classification

max height spine spine w/ feat.

Bl small
B very sparse

Bl eighth sparse
 full

l|||
all

—
-
OV

—
-
N

—
o_\

running time (ms) (log scale)

—
-
()

/0

Private Decision Tree Classification

BN small
I very sparse
3 B eighth sparse
=10 Ul
‘©
O
7))
S
= 2
-~ 10
S
O
£
S 4]
£ 10
-
C
-
B II ul ub
all

-
<
B
\—A

max height spine spine w/ feat.

/0

B very sparse

Private Decision Tree Classification
= 1?uiﬁhth '\7 E N S l TT

: 1
g
—~10
S
()
£
210’ | |
5
-
ﬁ i II nl 1

"~ max height spine spinew/feat. all

— . DIFFERENT

/0

Takeaway

Takeaway

* By designing good abstractions, building high-
assurance systems can be made accessible with
provable correctness and security guarantees

Il

Takeaway

* By designing good abstractions, building high-
assurance systems can be made accessible with
provable correctness and security guarantees

 Theory: sound and secure language design

Il

Takeaway

* By designing good abstractions, building high-
assurance systems can be made accessible with
provable correctness and security guarantees

 Theory: sound and secure language design

 Implementation: type checker and end-to-end
compller

Il

