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Wireless Systems @ UB
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RF-Sensing for Robotics

Visual Sensors Acoustic Sensors Wireless Sensors
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Task: Autonomously water all the plants in an

G5

unknown environment ]
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Task: Autonomously water all the plants in an

G5

unknown environment ]
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How does the robot localize itself in the environment
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Robots use visual landmarks for SLAM and
havigation
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Robots use visual landmarks for SLAM and
havigation
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Robots use visual landmarks for SLAM and
nhavigation )

No strong visual landmarks to
correct for robot drift
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Robots use visual landmarks for SLAM and
nhavigation )
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No strong visual landmarks to
correct for robot drift

Need a sensor providing diverse landmarks in monotonous

environment //’



“WIiFI-images” provide identifiable landmarks in the
environment .

“WiFi-images” provide diversity
even in monotonous environments ”
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WIiFI Images are probability profiles encoding the
angle of arrival of the signal
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Via two-way packet exchange, bearings are
measured on both ends
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Via two-way packet exchange, bearings are
measured on both ends

Deployed
Probability Profile Access point
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Integrating two-sided bearing measurements
within GTSAM'’s backend

Deployed
Access point
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Before optimization After optimization
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* Building consistent maps is memory and
compute intensive )

|_' RCE

Image
Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147 - 1168
WWW. adequatetravel com/blog/wp content/uploads/2018/12/Colosseum-The-Most-Visited-Building-in-Rome.jpg
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* Building consistent maps is memory and
compute Intensive

To find this loop closure
match, all the previous
observed landmarks
need to be compared

Applying loop closures
need large corrections to
the trajectory and map

Image
Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 31(5), 1147 - 1169

WWW. adequatetravel com/blog/wp content/uploads/2018/12/Colosseum-The-Most-Visited-Building-in-Rome.jpg \\
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* Building consistent maps is memory and
compute intensive

To find this loop closure
match, all the previous
observed landmarks
need to be compared

Applying loop closures
need large corrections to
the trajectory and map
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Loop closures detections avoided if landmarks

| .
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Loop closures detections avoided if landmarks can
uniquely identify themselves

G5
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VIWID — WI-FI Integrated into Visual SLAM
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WiI-FI based Navigation for Tiny Robots
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Wi-Fi based Navigation for Tiny Robots

(a) Real Trajectory
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(b) Localization result
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Physics based ML Simulators for Wireless Sensors
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Physics based ML Simulators for Wireless Sensors
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Real-time and Autonomous Map updates for Dynamic

Environments

Dynamic environments like a vast construction sites need updated maps in real-time.

How can we automate these in real-time mapping updates using everyday Wi-Fi signals?
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Using mmWave Radars for Perception

RGB/CMY: color

D: depth

&-. relative permittivity
[..: reflection co-efficieht




RF-Sensing for Localization and Navigation

Navigation
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https://www.techrepublic.com/article/why-jumping-into-the-metaverse-could-be-a-bad-idea/
https://southeastgenomics.nhs.uk/event/the-future-of-surgery/

Accurate and Reliable Location Deterrents

Navigation Multipath and Non Line of Sight
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https://www.techrepublic.com/article/why-jumping-into-the-metaverse-could-be-a-bad-idea/
https://southeastgenomics.nhs.uk/event/the-future-of-surgery/

Two Decades of RF based localization

MonoLoco Chronos ToneTrack SpotFi ArrayTrack EZ RADAR
MobiSys'18 NSDI'16 Mobicom'l5 @ Sigcomm'l5 NSDI'13 Mobicom'10 @ Infocom'00

Median: few decimeters
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Input Representation: AoA-ToF images

2+ Access Point

Robot
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Input Representation: AoA-ToF images
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Input Representation: AoA-ToF images

2+ Access Point
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Input Representation: AoA-ToF images

2+ Access Point

ival (0°)

Angle of Arri
o
o

o)
o

|

0 5 10

> Time of Flight (m)

Does not have context of Space and AP locations

University at Buffalo

G | Department of Computer Science
and Engineering

School of Engineering and Applied Sciences



32

Input Representation: XY images
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Input Representation: XY images
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Input Representation: XY images
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DLoc: Network Architecture
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Data Collection: MapFind
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MIRAGE — Enabling Location Privacy
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MIRAGE — Enabling Location Privacy
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Direct Path — Least Traveled Path

Reflected Path Access Point
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Direct Path — Least Traveled Path

Reflected Path Access Point
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ODbfuscate the Direct Path

Reflected Path Access Point
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Obfuscate the Direct Path
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ODbfuscate the Direct Path

cess Point
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ODbfuscate the Direct Path

Reflected Path Access Point
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Deployable Localization and Navigation
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Deployable Localization and Navigation
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Deployable Localization and Navigation
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Privacy of User’s Location
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Privacy of User’s Location

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences




£L

Privacy of User’s Location
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Privacy of User’s Location
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How does GPS do 1t?
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How does GPS do 1t?
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How does GPS do it?
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Compromised Server
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Compromised Server

Server in control
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Federated DLoc
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Federated DLoc
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Federated DLoc
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Input Representation — AoA-ToF: easy to scale
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Input Representation — AoA-ToF: easy to scale
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Input Representation — AoA-ToF: easy to scale

Polar to Sartesian £6
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Offline Training — Predicting AoA for each AP
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Offline Training — Predicting AoA for each AP

(o))
o

Angle ofArrlvaI
O'I
o

1 -N- B

Time of Flight

Input Image from AP; (x;,y;)

L

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Sin _
Decoder sin(8;) = b;
(Ds)

Cos
Decoder cos(6;) = q;

(D)

— Z Labs,i + Lo
=1



49

Offline Training — Predicting AoA for each AP
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Minimize the distance from the line

user location

P = (z,y)

é‘ ray formed by AoA
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Deployment
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Deployment
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Deployment
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Deployment
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App — For data collection and navigation
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Thank you

Questions?
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