~ More than you ever wanted to know about CSV

v Digging into the CSV script
v Script Outline
e Load file
¢ Split by line into records
¢ Split by delimiter into fields
o Test for a condition (field 2 != "Ensign")
e Print out another column (field 1 i.e., "Name")
v Survey: Common Bottlenecks
e File IO: open(...) and for line in f
e String splitting: split(“,”, line)
o String-parsing: int(field[2])
v Accessing Data: Streams and Paged Access
v Access data on the HDD/SSD/Network
* API: Read Page, Write Page
v Access Cost: Latency vs Throughput (Review of Memory Hierarchy)
« Network: ? Latency, Good throughput, Ginormous size
v HDDs: Bad latency, Good throughput, Huge size
* Why is paged access a good fit for HDDs?
e SSDs: Good Latency, Good throughput, Large size
e Memory: Great Latency, Great throughput, Small size
e Cache: Amazing Latency, Amazing throughput, Tiny size
v Python File API: Stream of Bytes
v How is the translation implemented?
* Read a page at a time, scan through it, then read the next page.
* Optimization idea: Pre-buffer (parallelize 10 and compute tasks)
v For x in Stream API: Stream of Record strings
v How is the translation implemented?
* readline = buffer data until you hit a newline, return the buffer
¢ Similar to record parsing... buffer until you hit a comma
v String parsing

v Optimization Ideas... i.e., Let’s reinvent CSV (and the script)
v Idea 1: Normalize Column Widths
v Instead of delimiters, have each “field” located in a well-known range of bytes
e Bytes 0-1==1ID
e Bytes 2-9 == Name
e Bytes 10-15 == Rank
e Bytes 16-18 == Age
v Benefits
* Don’t need split()
¢ Don’t need field delimiters (save ~4 bytes/line)
¢ Don’t need to parse irrelevant fields (e.g., bytes 1-2 of each line)
v Drawbacks
¢ Need to know how big each column is... need a “Schema” to track this information.
v Doesn’t quite work with variable-length fields (e.g., name, rank)
* Need to allocate space for max record size
* Need to include space to signal string size (e.g., \0’ character)
¢ What if max record size changes?
v Variant idea: Directory
e Store field offsets in a fixed-size “header” for each row.

v ldea 2: Pre-parsed fields



v Store direct byte representation on disk
e e.g., 41 == 0x00000029 == “\0\O\OA”
v Benefits
e Can be Faster (int(...) is slow)
* Typically ints/floats are more compact
v Drawbacks
v Be careful: Int = 8 (or 4 on older machines) bytes
e vs 2-3 bytes per number in the CSV file
v More bytes = more I0s = more slower...
* Tradeoff with performance improvement from removing int().
e Usually not worth it, but depends on where the data lives (HDD vs Memory).
v |dea: byte / short instead of int
e ... but need to know max number size.
e Drawbacks
v ldea 3: Rewrite the script

e ‘I=“Ensign” is more expensive than ‘> 25’ so put > 25 first.
v Why is this allowed?
e AND is commutative
v Benefits
e Faster
v Drawbacks

e ... not really any (as long as you pre-parse)

v What are some (other) things that we might want to do with a CSV file
v Filter it
v How do we specify a filtering condition?
* By Expression
e Nth - Kth records
v What do we need to know about the dataset?
e Can we expect the structure to be regular?
¢ Do fields follow common type patterns (e.g., dates, ints, etc...)?
* Maybe we'd like to have names to address different columns by?
v Transform it
e Pick out certain columns?
e Compute new columns (e.g., Birth Year)
¢ Again... what do we need to know about the dataset?
v Summarize it
e For discussion later on
v Repeatedly ask (different) questions
¢ Parse once, leave it in memory (if you can)
v Modify it
¢ Add/Delete new columns?
o Alter existing fields?

e Add new rows?

v Making the format write-friendly
v Challenges
¢ Field sizes might change after updates
* Field size statistics might change (e.g., max size)
v Where do you insert new records?
v Append to end?
* But what if you need them in a specific order
v |dea: Adapt record layout techniques to pages (i.e.,
e Challenge: Need to leave open space in the file

v Need a way to link pages together out of order



e Hierarchy
e Linked List
v How do you delete records?

e “Mark” records as deleted

v Recap

v The choice of storage format impacts performance
e Store data in its native byte encoding
v Layout fields in predictable locations
« Standardize layout for all fields (if possible)
¢ Use a directory header (if not)
e Layout records in predictable locations in a page
v ... but you need to store a record of how the data is organized... a “schema”
e How are pages organized?
¢ How are records organized?
¢ How are fields organized?
v What is each field’s type (string, int, date, float, etc...)
* Additional type information: How “big” is the field: see varchar / char
v Tradeoff Questions
¢ Do you have variable length fields?
¢ Do you need to modify data?
¢ Do you need to insert data?
» Do you expect random access or scans?
¢ Does the data need to be kept sorted?
v Know your Data Access Patterns:
¢ Stream (aka iterator): a sequence of records that you can scan through once
« Buffer (aka array): a randomly addressable sequence of records
v Paged Access: Hierarchical access: “randomly” addressable blocks are expensive, once loaded accesses within a block are cheap
¢ Parallels: HDD->Mem (disk pages/blocks), SSD->Mem (disk pages/blocks), Mem->Cache (cache lines), HDFS (pages)
v Know your Memory Hierarchy
¢ Registers -> Cache (L1->L2->L3) -> Memory -> SSD -> HDD -> Network (Same Switch, Same Rack, Same LAN, WAN)
v Going left-to right:
* Data Volumes increase (good)
v Latency/Throughput increase (bad)
« They increase at different rates, which affects algorithm tradeoffs
v Moving data between levels is EXPENSIVE

* 90% of databases is figuring out ways to avoid moving data between levels



