
Load file

Split by line into records

Split by delimiter into fields

Test for a condition (field 2 != "Ensign")

Print out another column (field 1 i.e., "Name")

Script Outline

File IO: open(…) and for line in f

String splitting: split(“,”, line)

String-parsing: int(field[2])

Survey: Common Bottlenecks

API: Read Page, Write Page

Network: ? Latency, Good throughput, Ginormous size

Why is paged access a good fit for HDDs?

HDDs: Bad latency, Good throughput, Huge size

SSDs: Good Latency, Good throughput, Large size

Memory: Great Latency, Great throughput, Small size

Cache: Amazing Latency, Amazing throughput, Tiny size

Access Cost: Latency vs Throughput (Review of Memory Hierarchy)

Access data on the HDD/SSD/Network

Read a page at a time, scan through it, then read the next page.

How is the translation implemented?

Optimization idea: Pre-buffer (parallelize IO and compute tasks)

Python File API: Stream of Bytes

readline = buffer data until you hit a newline, return the buffer

How is the translation implemented?

Similar to record parsing… buffer until you hit a comma

For x in Stream API: Stream of Record strings

String parsing

Accessing Data: Streams and Paged Access

Digging into the CSV script

Bytes 0-1 == ID

Bytes 2-9 == Name

Bytes 10-15 == Rank

Bytes 16-18 == Age

Instead of delimiters, have each “field” located in a well-known range of bytes

Don’t need split()

Don’t need field delimiters (save ~4 bytes/line)

Don’t need to parse irrelevant fields (e.g., bytes 1-2 of each line)

Benefits

Need to know how big each column is… need a “Schema” to track this information.

Need to allocate space for max record size

Need to include space to signal string size (e.g., ‘\0’ character)

What if max record size changes?

Doesn’t quite work with variable-length fields (e.g., name, rank)

Drawbacks

Store field offsets in a fixed-size “header” for each row.

Variant idea: Directory

Idea 1: Normalize Column Widths

Idea 2: Pre-parsed fields

Optimization Ideas… i.e., Let’s reinvent CSV (and the script)

More than you ever wanted to know about CSV

e.g., 41 == 0x00000029 == “\0\0\0A”

Store direct byte representation on disk

Can be Faster (int(…) is slow)

Typically ints/floats are more compact

Benefits

vs 2-3 bytes per number in the CSV file

Tradeoff with performance improvement from removing int().

Usually not worth it, but depends on where the data lives (HDD vs Memory).

More bytes = more IOs = more slower…

… but need to know max number size.

Idea: byte / short instead of int

Be careful: Int = 8 (or 4 on older machines) bytes

Drawbacks

Drawbacks

‘!= “Ensign”’ is more expensive than ‘> 25’ so put > 25 first.

AND is commutative

Why is this allowed?

Faster

Benefits

… not really any (as long as you pre-parse)

Drawbacks

Idea 3: Rewrite the script

By Expression

Nth - Kth records

How do we specify a filtering condition?

Can we expect the structure to be regular?

Do fields follow common type patterns (e.g., dates, ints, etc...)?

Maybe we'd like to have names to address different columns by?

What do we need to know about the dataset?

Filter it

Pick out certain columns?

Compute new columns (e.g., Birth Year)

Again... what do we need to know about the dataset?

Transform it

For discussion later on

Summarize it

Parse once, leave it in memory (if you can)

Repeatedly ask (different) questions

Add/Delete new columns?

Alter existing fields?

Add new rows?

Modify it

What are some (other) things that we might want to do with a CSV file

Field sizes might change after updates

Field size statistics might change (e.g., max size)

But what if you need them in a specific order

Append to end?

Challenge: Need to leave open space in the file

Need a way to link pages together out of order

Idea: Adapt record layout techniques to pages (i.e.,

Where do you insert new records?

Challenges

Making the format write-friendly

Hierarchy

Linked List

“Mark” records as deleted

How do you delete records?

Store data in its native byte encoding

Standardize layout for all fields (if possible)

Use a directory header (if not)

Layout fields in predictable locations

Layout records in predictable locations in a page

How are pages organized?

How are records organized?

How are fields organized?

Additional type information: How “big” is the field: see varchar / char

What is each field’s type (string, int, date, float, etc…)

… but you need to store a record of how the data is organized… a “schema”

Do you have variable length fields?

Do you need to modify data?

Do you need to insert data?

Do you expect random access or scans?

Does the data need to be kept sorted?

Tradeoff Questions

The choice of storage format impacts performance

Stream (aka iterator): a sequence of records that you can scan through once

Buffer (aka array): a randomly addressable sequence of records

Parallels: HDD->Mem (disk pages/blocks), SSD->Mem (disk pages/blocks), Mem->Cache (cache lines), HDFS (pages)

Paged Access: Hierarchical access: “randomly” addressable blocks are expensive, once loaded accesses within a block are cheap

Know your Data Access Patterns:

Registers -> Cache (L1->L2->L3) -> Memory -> SSD -> HDD -> Network (Same Switch, Same Rack, Same LAN, WAN)

Data Volumes increase (good)

They increase at different rates, which affects algorithm tradeoffs

Latency/Throughput increase (bad)

90% of databases is figuring out ways to avoid moving data between levels

Moving data between levels is EXPENSIVE

Going left-to right:

Know your Memory Hierarchy

Recap

