+ Indexing

v Workflow Recap:
¢ Load/Parse data records
e Filter records (rank # Ensign, age > 25)

¢ Print names

» Today: Let’s combine steps 1 & 2

v Basics: Sorting

v Root Idea: Sort records by age

v Algorithm:
e Can use Binary Search over data to find first record > 25
e Return that record and everything following it
v Challenges
v Need a record format with predictable record locations
¢ Fixed-Size Records
e Put a fixed number of records on each “page”
e Paging makes binary search pricy
e What happens if the data changes?
v Does this generalize?
e age > X; Same as above
e age <Y, Yes, Start from first record, return everything until first record >= X
e age = X: Yes, Binary Search Still Works (may still need to return multiple records)

e X <age <Y, Yes, Binary Search, then return everything until first record >=Y

v Indexes

v Challenges
v Paging (respectively cache lines) makes binary search expensive
e Scan is still comparatively cheap
v What if we need to access 2 (or more) attributes?
¢ Modulo a few corner cases, we can’t sort more than once

¢ No real answer for this point today... we’ll get back to it

v |dea 1: Page-aware ‘Key’ Summaries
v Implementation 1: One page of summaries
e Fit as many [key+pointer] pairs as you can in one page
e Each pointer points to the first record equal to or greater than the listed key

e Binary search on keys to find the pointer to follow



e Limitation: Doesn’t scale to larger data sizes; Still may need to binary search across data on multiple pages)
v Implementation 2: Add indirection (Tree Indexes)
e Binary search within a page is cheap, so keep one [key+pointer] per page
e Pack as many [key+pointer]s into a summary page as you can.
v If you overflow the summary page, start building a summary of summaries
e Tier 1: Data Pages
e Tier 2: Pages of [Key+Pointer]s to the first key on each data page
e Tier 3: Pages of [Key+Pointer]s to the first key on each tier 2 page
e Tier4: etc...
v Challenge: Handling Changing Data
e Can't insert into the middle of a sorted file
e Can'tinsert into a packed (sorted) summary page
v Implementation 3: Out-of-order pages (B+Tree-Ish Indexes)
v Treat pages as atomic blobs of storage (rather than a single contiguous region)
e Bonus: Don’t need fixed-size records
e Leave empty space on each data page and each summary (tree) page
v What to do when a page “fills up” or “empties out”?
e Shift records to/from other pages at the same level (pivot)
e Merge two pages together
e Create a new level / flatten a level
v Degenerate case:
e Super-tall structure
v Implementation 4: As above, but maintain size invariant (B+Tree)
e Invariant 1: Uniform Tree Depth
¢ Invariant 2: 50% < fill < 100% (for all except root page)
v When page drops below 50% fill, merge with adjacent page

e Recur higher if necessary

<

When page exceeds 100% fill, split into 2 pages

¢ Recur higher if necessary

When root drops to 1 pointer, reduce depth by 1

When root exceeds capacity, increase depth by 1

Optimization: Borrow/Loan records/[key+pointer]s from/to adjacent pages



