v Hash Tables

v Observation: Trees have logarithmic access costs

¢ Can we do better?

v |dea: Buckets

e Partition the data according to a simple, predictable, deterministic
pattern

v Summary Idea: Assume an f(x) that gives you a number between 1
and N

e e.g., "first letter" or "first k bits"0

¢ Allocate N pages, use f(key) to figure out which page a record is
supposed to live on

v Pros
e Fast: O(1) page acesses (ideally)
v Cons
e Need to pick N correctly
v Clustering: Data is generally not uniformly distributed

e (Class names: “X”, “S” common letters: “W” completely empty

v Idea: Pick a Deterministic “Reshuffling”

v Hash Functions: h(x) -> Transform any x into a pseudo-random
value

e Pseudo-Random: Statistically unpredictable output between 0
and 2{# of hash bits}_-l

¢ Deterministic: h(x) is always the same
v Adaptation: Modulus Operator Makes #s between 1 and N
v % = Modulus = Remainder after Division
e 5%2="1
e 5%3=2



e 6%3=0
e 7%3=1
e 8%3=2

v If h(x) gives you a number between 0 and [Some arbitrarily big
number]

e h(x) % N gives you a number between 0 and N-1

v Aslong as N << [Some arbitrarily big number], the result is still
“random enough”

e Deviation from uniform random capped at N / [Some
arbitrarily big number]

e Unless [Some arbitrarily big number] % N = 0... then
randomness perfectly preserved

v Overall Solution:
e Allocate N pages
¢ h(key) % N tells you on which page the record with ‘key’ lives

e Use “overflow pages” to handle cases where you need to put too
much data in one page.

v Pros

e Fast: O(1) page acesses (ideally)

e Data is distributed more uniformly
v Cons

e Only supports == tests

e We still don’t know how to pick N... and what if the “best” N
changes?

v Idea: “Dynamic” Hashing

v Problem: Changing N requires re-hashing everything

e Example:
def h(x):
return x; # Bad, but easy “hashing” fn

e Data: 1,2,5, 8,9, 11



v Now:N=5

e 1->1,2->2,5->0,8->3,9->4,11 ->1
v Change: Nto 6

e 1->1,2->2,5->5,8->2,9->3,11->5

Observation: Jumping between multiples of N make reshuffling
easier

e Ifh(x) % 5=4

e Then h(x) % 10 = Either 4 or 9

Decide how to split on a bit-by-bit basis:

e Use 1 bit (2 pages), 2 bits (4 pages), 3 bits (8 pages), etc...
e But make the decision on a page-by-page basis

e Use an “index” that tracks which pages correspond to which hash
buckets

If you need to split a page
v Check to see if you need to double the number of hash buckets

e |f so, clone the index: Buckets N to 2N-1 start off pointing to
the same pages as Buckets 1 to N-1

¢ Allocate a new page
v Re-hash the contents of the page, using one more bit than before.

e Records that have a 1 for the extra bit go to the new page,
records with a 0 stay in place

¢ Point the appropriate index entry(ies) at the new page

The same happens in reverse to merge two pages together
To pull this off, you need to track...

e The number of buckets in the index

e Which pages have been allocated

e For each allocated page, how many bits of hash are being used
for records on that page.



