v 2-Way Sort

v Problem

¢ You have some large number (e.g., 3072) pages of data to sort
¢ You only have a small number (e.g., 3) pages to do it

e How do you do this?

v Idea 1: Sort/Merge

v Phase 1:
e Load 3 pages of data
e Sort everything
e Flush out this new sorted run of size 3 to disk
¢ Repeat until all data touched once
v Phase 2
v Pick 2 sorted runs of size 3 and merge them together
e Requires 2 pages from the 2 sorted runs
e Requires 1 output page
e As soon as an input page is empty, read in the next
e As soon as an output page is full, flush it to disk

e Repeat until all sorted runs of size 3 are merged into sorted
runs of size 6

v Phases 3 to 11 (or, in general, until done)
e As phase 2, but keep multiplying the sorted run size by 2
v Cost Analysis:
e Phase 1: 3072 x 2 IOs (one read/write per page of data)
e Phase 2-11: 3072 x 2 10s (one read/write per page of data)
v In general:

¢ Phase 1 creates runs of size 3

e Phase 2 creates runs of size 3-2”{phase-1}
v Last phase is when 3-27{phase-1} >= #pages
¢ One sorted run of the full length of the data
v Equivalently:
e 2N\{phase-1} >= #pages/3
e phase-1 >= log_2(#pages/3)
e phases >= 1+log_2(#pages/3)
e ceil(1 + log_2(#pages/3)) phases required
e Total: #pages * 2 * (1+log_2(#pages /N)) I10s

v Idea 2: N-Way Sort/Merge

e What if we have more than 3 pages (say we have N pages)?
v Phase 1:
e Load N pages of data instead
v Phases 2 and onwards:
e Simultaneously merge N-1 sorted runs
¢ (optionally use some of the space to buffer reads/writes)
v Cost Analysis
e Base cost per phase is still #pages x 2 I0s each
¢ Now, last phase is at N+(N-1)*{phase-1} > #pages
e So: ceil(1 + log_{N-1}(#pages / N)) phases required

v Idea 3: Longer Initial Sorted Runs

v Using only N memory, can we create sorted runs longer than N?
e Obviously, | wouldn't ask if the answer was no.

v Idea: Flush data out a little at a time
e Load N pages of data, sort in-memory
e Flush the first page out to disk

* Now you have a free page!

¢ Read in another page of unsorted data
e Sort the result in memory
e Repeat?

v Problem: What if you get a lower value than something you
already flushed out?

e Keep track of the highest value flushed out to disk in the
current sorted run.

¢ Don't flush out records below this value
¢ Instead, set them aside for the next sorted run

e Eventually you won't be able to flush any new records out... at
this point, you end the current sorted run and start the next one

v Cost Analysis:

e On average, you have a 50% chance of getting a record lower
than your highest flushed value

e |Initial sorted runs will be ~2x as long, saving you 2/N phases
v Bonus
e What happens if the input is *already* sorted?

e ... or mostly sorted?

v Aggregation
v Overview

e Data is Big - Users often want summary statistics

e How do we compute these summary statistics efficiently?

v Fold

v An "iterator-style" operation with 2 parts
e A Default Value (e.g., 0)

¢ A Merge Current Value and Record Value operation (e.g.,
current + record)

COUNT
e Default: 0
e Merge: current + 1
SUM
e Default: 0
e Merge: current + record
MAX (resp, MIN)
e Default: -infinity
e Merge: Max(current, record)
AVERAGE
¢ Actually a combination of COUNT and SUM:
e SUM(X) / COUNT(*)
v Can express as a fold over a tuple of values:
e Default: < count: 0, sum: 0 >
e Merge: < current.count + 1, current.sum + record >
v Need a "finalize" step:
e Finalize: current.sum / current.count
MEDIAN
e Default: @

e Merge: current L+J record

e Finalize: Find the median
v What gives?
e Median is a "holistic" aggregate

e "Algebraic" aggregates have a constant-size intermediate
result

e Holistic aggregates need all of the data (e.g., in sorted order)

» Group-By Aggregation

v What if you want multiple aggregate values?

v SELECT A, SUM(B) FROM R

¢ Creates one row for each A, with a sum of all of the B values
from rows with that A.

e How do we implement this?

v |dea 1: In-Memory Hash Table

e Scan records in any order

v For each record, check to see if the hash table contains the

group by attribute(s) value(s)

e If not, create a new entry in the hash table with the default
group value

Incorporate the new record's aggregate value

v |ldea 2: Pre-Sort the Data

Problem w/ Idea 1: What if you run out of memory

Use the external sort algorithm above by the group-by
attributes

Benefit: you know that all elements of a single group will be
adjacent to one another:

e |f you iterate over the sorted list of elements, as soon as the
group by attributes change, you know you're done with that

group

e ... so you only ever need to keep one "current value" in memory
at a time

Pro: You can start emitting intermediate results before you're
done with everything

Con: Log(N) full passes over the data

v |dea 3: Pre-Hash the Data

Do one pass through the data to create hash buckets that will fit
in memory

Like sorting, but you only need one pass through the data

e ... unless you guess wrong about the number of buckets to
create

