~ Merging Sorted Lists

« Example!

+ Group-By Aggregation
v What if you want multiple aggregate values?
v SELECT A, SUM(B) FROM R
e Creates one row for each A, with a sum of all of the B values from rows with that A.
¢ How do we implement this?
v Idea 1: In-Memory Hash Table
e Scan records in any order
v For each record, check to see if the hash table contains the group by attribute(s) value(s)
* If not, create a new entry in the hash table with the default group value

¢ Incorporate the new record's aggregate value
v |dea 2: Pre-Sort the Data

¢ Problem w/ Idea 1: What if you run out of memory

¢ Use the external sort algorithm above by the group-by attributes

<

Benefit: you know that all elements of a single group will be adjacent to one another:

¢ If you iterate over the sorted list of elements, as soon as the group by attributes change, you know you're done with that group
e ... so you only ever need to keep one "current value" in memory at a time

¢ Pro: You can start emitting intermediate results before you're done with everything

e Con: Log(N) full passes over the data
v |ldea 3: Pre-Hash the Data
¢ Do one pass through the data to create hash buckets that will fit in memory

v Like sorting, but you only need one pass through the data

e ... unless you guess wrong about the number of buckets to create

v Joins and Cross Products

v How do you combine 2 tables?
e Merge rows (AU B)
v Merge columns
¢ Question: What rows from A go with what rows from B?
v Example
v Data
* Table of Students(student_id, name)
¢ Table of Courses(course._id, title)
* Table of SignedUpFor(student_id, course_id)
v Count the number of students signed up for each course?
e SELECT title, COUNT(*) FROM Courses NATURAL JOIN SignedUpFor
v Count the number of people named "Kirk" signed up for each course?
e SELECT title, COUNT(*) FROM Courses NATURAL JOIN SignedUpFor NATURAL JOIN Students WHERE name LIKE '% Kirk'
v General Pattern
¢ Pair rows from A with rows from B where a specific condition holds (e.g., Courses.course_id = SignedUpFor.course_id)
v More general conditions are also possible
v "List identification numbers of borrowers who took out books on two different days"
e Join Borrower with itself on "borrower.1id = borrower2.id AND borrower1.date <> borrower2.date"
v "Find all restaurants within 2 miles of each person"

» WHERE distance(person.loc, restaurant.loc) < 2 miles
v How do you implement this?

v (Naive) Idea 1: Nested Loop Join
v Try every pair of tuples against the condition

v foreach(tuplel in left)

v foreach(tuple2 in right)
v if(condition(tuplel, tuple2))
* emit(concat(tuple1 + tuple2))
v Slow... but guaranteed to work on any condition
e O(N"2)
v (Slighlty less naive) Idea 2: Block Nested Loop Join
e Limitation of Idea 1: Inner loop loads ALL of the data in |left| times
e |dea: Load in Blocks
v foreach(block1 in left)
v foreach(block? in right)
v foreach(tuplel in block1)
v foreach(tuple2 in block2)
v if(condition(tuplel, tuple2))
* emit(concat(tuple1 + tuple2))
v Slightly faster... only need to load in |left| / |block| copies
o Still O(N/2), but with a better constant
v Idea 3: Sort + Merge (Sort-Merge Join)
v If you have a predicate of the form A =B
e Sort left on A, sort right on B, and then merging is linear
v foreach(tuple in merge(condition, sort(left), sort(right))):
v if(condition(tuple1, tuple2))
* emit(concat(tuple1 + tuple2))
v Total cost: Cost of sorting + O(N)
e Data might already be sorted!
¢ Otherwise, O(N*log(N))
¢ Limitation: Only works if you have an A = B predicate (so you can sort on A, B)
v Idea 4: Use an Index (Index-Nested Loop Join)
v foreach(tuplel in left)
v foreach(tuple2 in right.index_lookup(condition, tuple1))
v if(condition(tuplel, tuple2))
* emit(concat(tuplel + tuple2))
v |left| index lookups rather than full table scans
e O(N * [cost of one index lookup])
v Idea 5: Build an Index... in memory (1-pass index join)
o left_index = {}
v foreach(tuplel in left)
¢ left_index.add(tuplel)
v foreach(tuple2 in right)
v foreach(tuplel in left_index.index_lookup(condition, tuple2))
v if(condition(tuplel, tuple2))
* emit(concat(tuplel + tuple2))
e Works with Tree indexes, Hash indexes
v Overall Cost: O(N logN) or O(N)
e Cost of building index (O(N logN) for tree, O(N) for hash
* Cost of scanning, per-record: O(logN) for tree, O(1) for hash
* Might need to return multiple records... so really it's O(logN + |records returned|) and O(1+ |records returned|)
* Most efficient algorithm available... but requires enough memory for at least one table to stay in memory
v Idea 6: Build an index on disk (2-pass index join)
e Same as before, but index goes to disk
v Problem: Random access to disk can be avoided!

e Solution: Build an index on both inputs

For a hash index, make sure you use the same hash fn for both tables.

For a tree index... welll... this basically degenerates to Sort+Merge Join

Cost: O(N) IOs for Hash ... but with a fairly high constant (join adds 2 |Os per input page)

