v Recap — Tons of Options

v Physical Layout - Records in Page / Fields in Record
e Delimited — Separator character splits fields (‘,’) /records (‘\n’)
¢ Fixed Width — Each field/record has a predictable / known size
* Directory — Each field/record has a fixed-size header/footer indicating where each field begins
v Indexing
v Primary Hash — Put full records into a hash table (O(1) lookup, but only for == predicates)
e Static vs Dynamic
v Primary Tree — Put full records into a tree-structure (O(log(N)) lookup, works for any ==, >, < predictate)
e B+Tree
e LSM Tree

e Secondary (Hash or Tree) — Index just record IDs in to avoid multiple copies of the entire record
v Sorting

¢ In Memory

e External
v Group-By Aggregation
¢ 1-Pass Hash — Build a hash-table in memory to store each group and its current aggregate value
e Sort First — After sorting on group-by columns, all elements in a group adjacent (O(Nlog(N)) time)
e 2-Pass Hash — Organize data into hash buckets, then do a 1-pass hash for each bucket
v Joins
¢ Nested Loop Join — Foreach sin S : Foreach rin R : if test(s, r) : emit(s, r)
¢ Block-Nested Loop Join — Same, but add 2 more layers of loop, loading in blocks
¢ Index-Nested Loop Join — Replace inner loop with an index lookup based on the outer loop
e Sort/Merge Join — Sort both sides of the join first, then scan over the two lists in parallel
e 2-Pass Hash Join — Group data from both sides into parallel buckets, then do an in-memory join on each bucket.
e 1-Pass Hash Join — Build an in-memory hash table for one side, then use it for an index-nested loop join ewith the other.
e 1-Pass Tree Join — Build an in-memory tree index for one side, then use it for an index-nested loop join with the other.
v Messy!
v Assuming you make each choice exactly once, 864 options!
e Generally more!
v Violating separation of concerns
e Programmers need to think about what they want to compute AND how to compute it, all at the same time
v Can we fix it? Yes, but we need two things:
¢ We need a way to reason about “equivalent” options.

e We need a way to evaluate which option is “best”.

v Reasoning about Equivalent Options

v Basic idea: Create a language (or “Algebra”) to describe computations
v Common theme: Every expression in this language defines a table
e Like Math: 1 + 1 # “Bob”... it’s a number instead
e X,Y are tables, X (?) Y is also a table (if we decide on ‘(?)’ correctly)
v What are the elements of this language (a “Relational Algebra”)?

* Need some sort of atomic, leaf value... just “a table” with an explicit value

v The basic operations we discussed at the start:
e Filter (also called Select) — oc
e Map (also called [Generalized] Projection) — ma
e Union — U
v The stuff we talked about in the last few classes seemed useful
e Sort — 1
e Aggregation (and Group-By Aggregation) — y
e Cross Products (and Joins) - x (and X)
v Some other useful tools:
e Convert Bags to Sets (Distinct) — &
e Take the first k records (Limit) — L
v Let’s try a few things:
v If Ris a table, then so is o(R)
e ... and so is 1(oc(R))
e ...and so is 1(oc(R x S))
v The “join” pattern oc(R x S) occurs often — and we have more efficient algorithms for it
e ... SO we give it a shorthand: R Xc S
v ... Also a few other common shorthands:
e R X(R.ship = S.ship) S = R Xship S
v R X(R.ship =S.ship) S = R X S (if ‘ship’ is the only attribute name in common between R and S)
e Also called a ‘natural join’: And of equality predicates on all columns with the same name

v Example: Come up with 2-3 separate queries for the Last Names of all Captains of a Ship Located at Bajor.

® TiLast Name(OLoc="Bajor'(Locations Xship Captains))
® TiLast Name((OLoc="Bajor'(Locations)) Xship Captains)
® TlLast Name((TTLast Name,Ship(OLoc="Bajor’(Locations))) Mship Captains)
e These are all equivalent queries!
v What is Equivalent?

e Two expressions are equivalent if they’re guaranteed to produce the same output

Equivalent Expressions

They look the same, but one is good, one is evil

\Q—~—--

W -
(Leonard Nm*R)E (Zac#ﬁéryj?.ﬂntg)

Two different expressions of the “same” character

RA Equivalencies

lection
Ocines(R) = 0c,(0¢,(R)) (Decomposable)
Ocives (R) = 0(0c, (R)U o, (R)) (Decomposable)
Ocy (0cy (R)) = 0cy (0, (R)) (Commutative)
Projection
To(R) = ma(Taus(R)) (Idempotent)
Cross Product (and Join)
Rx(SxT)=(RxS)xT (Associative)
(RxS)=(SxR) (Commutative)

Try It: Show that R x (Sx T) =T x (R x S)

Selection and Projection

Ta(0c(R)) = 0c(ma(R))

Selection commutes with Projection
(but only if attribute set a and condition ¢ are compatible)

a must include all columns referenced by ¢

Show that
Ta (UC(R)) =Tgq (Uc (’/TaUcols(C) (R)))

When is this rewrite a good idea?

Join

o.(RxS)=R, S

Selection combines with Cross Product

to form a Join as per the definition of Join
(Note: This only helps if we have a join algorithm for conditions like ¢)

Show that

0(R.B=S.B)A(R.A>3)(B2 X §) = 0(r.a>3) (R >X(Rr.B=5.B) 5)

When is this rewrite a good idea?

Selection and Cross Product

o.(Rx S) = (0.(R) X S)

Selection commutes with Cross Product
(but only if condition ¢ references attributes of R exclusively)

Show that

0(R.B=S.B)A(R.A>3)(l2 X S) = 0(r.a>3)(R) X(r.B=5.B) S

When is this rewrite a good idea?

Projection and Cross Product

Ta(R X §) = (70, (R)) X (7a,(5))

Projection commutes (distributes) over Cross Product
(where a1 and az are the attributes in a from R and S respectively)

Show that
Ta(R X S) = (ma, (R)) X (m4,(5))

(under what condition)
How can we work around this limitation?

’/Ta((’/ralu(cols(c)ﬂcols(R) (R)) e (Wazu(cols(c)ﬂcols(S) (S)))

When is this rewrite a good idea?

RA Equivalencies

Union and Intersections are Commutative and
Associative

Selection and Projection both commute
with both Union and Intersection

When is this rewrite a good idea?

Example

TR.AT.E

O(R.B=S.B)A(S.C<5)A(S.D=T.D)
SELECT R.A, T.E

FROM R, S, T

WHERE R.B = S.B
AND S.C < 5 ///\\\
AND S.D = T.D X T

