» When to Optimize

v Enumerating all possible plans
e Selection Pushdown
¢ Join Conversion
¢ Join Reordering

¢ Pick a Join Algo
v Which Plan is the Best?

¢ Always push down selections
e Always convert joins
e Which join order???
e Which join algo?
v What makes a plan the best?
e Idea 2: 10 Cost
e Idea1: CPU Cost

»|O Cost

v Overview

v How do we measure IO Cost?
e Number of reads performed by each operator
e Number of writes performed by each operator
v What about communicating between operators?
e Assume operators can communicate with each other for free.
v Costs only include:
e The cost of materializing the data IF it needs to be materialized on disk
e The cost of reading the data back in IF it needs to be read back in.
v What else do we need?
* For some of these estimates, we’ll need to be able to estimate the size of each table (call the # of pages in R: |R|)
v Basic properties of the data:
e Key Columns

e Distribution of Values

v |O Costs

v File Scan (R)
e Number of IOs : |R|

<4

Selection (o(R))
e Number of I0s : 0 (never need to materialize a selection)
v Index Lookup (o(R) where R is a file scan)
v Number of IOs for a Hash Index : |o(R)|
e How big is this? Return to it later.

o Number of IOs for a B+Tree Index with directory pages of size B: |o(R)| + logB(R|)

<

Projection (r(R))
e Number of I0s : 0 (never need to materialize a projection)
v Union

e Number of I0s : 0 (never need to materialize a BAG union — see distinct for set union)

<

Sort (t(R)) — External Sort with B pages of memory

e Number of IOs : ~2-logs(|R| / 2)
v Cross-Product (R x S) — BNLJ with B pages of memory for blocking R
v Number of I0s : [S]| + (|R| / B)*(|S|)
¢ Need to write all of S to disk once: |S| pages
v Repeat (|R|/ B) times...
e Read B pages of data from source operator R: Free
¢ Join the block with the materialized data in S, one tuple at a time: |S|
v Join (R X S) — 1-pass Hash/Tree Join
e Number of 10s: 0 (entirely in-memory)
v Join (R X S) — 2-pass Hash Join
v Number of 10s: 2+(|R| + |S|)
e Write all |R| and |S] to disk, bucketizing: |R| + |S|
e Read in each bucket: |R| + |S|

<

Join (1(R) X T(S)) — Sort/Merge Join

e Number of 10s: 0 + cost of the T(S) (Merge step is free)

<

Join (R XRA=s.A S) — Index Nested Loop Join (assuming index on S)

v Number of IOs: |R

* [cost of one index lookup: Ojconst] = S.A(S)]
e Each inner loop is basically one Index Scan
v Aggregation (¥(R)) — In-memory
e Number of 10s: 0
v Aggregation (¥(R)) — On-Disk, Hash-Based
v Number of I0s: 2|R|
o Write each bucket out, read each bucket in
v Aggregation (¥(t(R)) — On-Disk, Sort-Based

e Number of 10s: 0 + cost of T(R)

Distinct (6(R))— Works EXACTLY like Aggregation

+ Cardinality (Size) Estimation

v Most of the operators are straightforward
e n(R), I(R) : |R|

RUS:|R| +|9]|

RxS:|R|*|S|

e R X S:lIdentical to o(R x S)...

v Some are hard
e o(R)
* ¥(R) & 6(R)
v Selection : Compute Selectivity (or % tuples passed through)
v Generic (Default) Heuristic:
e Selectivity = 0.5
e Works ... mostly well 70% of the time. Very brittle and liable to break things
e Be wary: DBMSes actually do this!
v R.A =[Const]
e If R.Ais a Key, then precisely 1 tuple passes through... given
v Idea: Collect stats: # of distinct values

e Selectivity = 1/ # of distinct values of R.A

e Works well... but only for discrete data (Strings, Ints, Dates)
e Also gives you “Key” for free
e Also works for R.A in [List]
v R.A < [Const] (also works for others)
v Idea: Collect stats: Min/Max, and assume a uniform distribution of values
e Selectivity = ([Const] - Min) / (Max - Min)
e Works for continuous data (Floats)
v RA=R.B
e (the Equijoin condition)
v lIdea 1: Assume no correlation
e Becomes identical to either R.A = const or R.B = const
e For each row, you’re testing whether R.B = Some specific, somewhat arbitrary value
e Both are an upper bound on the selectivity, so take whichever reduction gives you the lower value
v C1 AND C2
e Assuming no correlation between C1 and C2: Selectivity(C1) * Selectivity(C2)

» Going more fancy: Histograms (See attached)

